
CS 161 (Stanford, Winter 2025) Lecture 16
Adapted from Virginia Williams’ lecture notes. Additional credits go to Chuanqi Shen, Luke
Johnston, Gregory Valiant, and Mary Wotters.
Please direct all typos and mistakes to Moses Charikar and Nima Anari.

Max Flow, Min Cut and Ford-Fulkerson

1 History of Flows and Cuts

Today we will study a very interesting problem called the max flow problem. Before we get to
the algorithm and math, we briefly discuss the interesting history behind max flow! During
the Cold War, the US Air Force at that time was very interested in the Soviet train networks.
In reports that were declassified in 1999, it was revealed that the Air Force collected enough
information about the train network that they were able to determine how resources were
shipped from the Soviet Union to Europe. The Air Force was very interested in determining
how much resources can be transported from the Soviet Union to Europe, and what needed
to be done to destroy this movement of resources. What this translates to is the min cut
problem, i.e., cutting the minimum number of train tracks so that nothing goes to Europe.
Here, cutting an edge meant dropping a bomb. Nowadays, however, there are much more
peaceful applications of this problem, for instance, understanding the flow of information
through the Internet.

2 Formulation of the Maximum Flow Problem

You are given an input graph G = (V, E), where the edges are directed. There is a function
c : E → R≥0 that defines the capacity of each edge. We also label two nodes in G, s and t,
as the source and destination, respectively. The task is to output a flow of maximum value.
We will shortly define what a flow is and what a flow of maximum value means.

A flow f is a function f : E → R≥0 such that

1. Capacity constraints are satisfied:

∀(u, v) ∈ E : 0 ≤ f (u, v) ≤ c(u, v)

2. Flow conservation constraints are satisfied:

∀v ∈ V − {s, t} :
∑

x∈Nin(v)

f (x, v) =
∑

y∈Nout(v)

f (v , y)

Here Nin(v) denotes the set of nodes with an edge that points to v and Nout(v) denotes
the set of nodes that v points to.

1

s

a b

c

t

10

11

12

5

3

100

10

s

a b

c

t

5

11

0

5

1

6

10

Figure 1: (Left) Graph G with edge capacities (Right) Graph G with a sample flow.

Suppose that there are no edges going into s and no edges coming out of t. From the
above, you can verify yourself that

∑
x∈Nout(s)

f (s, x) =
∑
y∈Nin(t)

f (y , t). We define the value∑
x∈Nout(s)

f (s, x) to be the value of the flow f . We usually denote the value of a flow f as
|f |. If there are edges going into s and out of t, then the value of f is

|f | =
∑

x∈Nout(s)

f (s, x)−
∑
y∈Nin(s)

f (y , s).

The max flow problem is to find some flow f such that |f | is maximized.

Remark 1. In the analysis below we consider graphs with a single source s and a single sink t.
However, if we need to work with a graph with multiple sources, we can do so by adding a
new source node, and then adding edges with capacity infinity from it to each of the multiple
sources. Similarly, if we want to have multiple sinks, we add a new sink node and add edges
from the multiple sinks to that sink with capacity infinity.

3 Example

In Fig. 1, we have a graph G and a sample flow f . Observe that the two constraints for a flow
are satisfied. There can be multiple other flows possible that can satisfy the constraints. For
our given flow, |f | = 16. The max flow for this graph is actually 18, as we will see shortly.

4 Formulation of the Minimum Cut Problem

Now, we give a formulation of the min cut problem defined for directed graphs with source
and destination nodes s and t. Note that there is also a version of the min cut problem
without a source and sink node, though we won’t discuss that now.

An s-t cut is a partition V = S ∪ T where S and T are disjoint and s ∈ S, t ∈ T , and the
size/cost of an s-t cut is

c(S, T) :=
∑

x∈S,y∈T

c(x, y).

2

For our graph G shown above, if we set S = {s, a, c} and T = {b, t}, then the cost of the cut is
c(a, b)+c(c, b)+c(c, t) = 5+3+10 = 18. If we take another cut S′ = {s, c}, T ′ = {a, b, t},
then c(S′, T ′) = c(s, a)+ c(c, b)+ c(c, t) = 10+3+10 = 23. Note that we do not consider
the edge {a, c} as it is in the wrong direction (we only consider edges from S′ to T ′).

5 The Max-Flow Min-Cut Theorem

Lemma 2. For any flow f and any s-t cut (S, T) of G, we have |f | ≤ c(S, T). In particular,
the value of the max flow is at most the value of the min cut.

Proof.

|f | =
∑

x∈Nout(s)

f (s, x)−
∑
y∈Nin(s)

f (y , s)

=
∑
v∈S

 ∑
x∈Nout(v)

f (v , x)−
∑

y∈Nin(v)

f (y , v)

 [by flow conservation constraint for v ̸= s]

=
∑
v∈S

 ∑
x∈Nout(v)∩S

f (v , x)−
∑

y∈Nin(v)∩S

f (y , v)

+∑
v∈S

 ∑
x∈Nout(v)∩T

f (v , x)−
∑

y∈Nin(v)∩T

f (y , v)


=

∑
v∈S

 ∑
x∈Nout(v)∩T

f (v , x)−
∑

y∈Nin(v)∩T

f (y , v)

 [first term sums to 0]

≤
∑

v∈S,x∈T,x∈Nout(v)

f (v , x) ≤
∑

v∈S,x∈T,x∈Nout(v)

c(v , x) = c(S, T).

In the proof,
∑
v∈S

(∑
x∈Nout(v)∩S f (v , x)−

∑
y∈Nin(v)∩S f (y , v)

)
= 0 since we add and subtract

the flow f (u, v) for every u, v ∈ S such that (u, v) ∈ E.

We get the following consequence.

Corollary 3. If we can find f and (S, T) such that |f | = c(S, T), then f is a max flow and
(S, T) is a min s-t cut.

It turns out that we can always find such f and (S, T) for any graph.

Theorem 4 (Max-Flow Min-Cut Theorem). For any graph G, source s and destination t, the
value of the max flow is equal to the cost of the min cut.

We will show this by coming up with an algorithm. The algorithm will take the graph G and
some flow f that has already been constructed, and create a new graph that is called the
residual graph. In this new graph, the algorithm will try to find a path from s to t. If no
such path exists, we will show that the value of the flow we started with is the value of the

3

s

a b

c

t

5

212

5

5

1

10

94

6

11

Figure 2: The residual network given the flow presented in Fig. 1.

maximum flow. If not, we show how to increase the value of our flow by pushing some flow
on that path.

6 The Ford-Fulkerson Max-Flow Algorithm

We will make an assumption on our graph. The assumption can be removed, but it will make
our lives easier. We will assume that for all u, v ∈ V , G does not have both edges (u, v) and
(v , u) in E. We can make this condition hold by modifying the original graph in the following
way. If (u, v), (v , u) ∈ E, we split the edge (u, v) to two edges (u, x) and (x, v), where x is a
new node we introduce into the graph. This makes the number of nodes at most m + n.

Now, let f be a flow given to us. We will try to see if we can improve this flow. We will define
the residual capacity cf : V × V → R≥0 as follows.

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E,
f (v , u) if (v , u) ∈ E,
0 otherwise.

Basically, what this does is that, if there is any flow through the edge, you remove the flow
from the capacity and add an edge in the opposite direction with the value of the flow. The
reason we do this is because the flow we picked thus far might not be the correct flow, and
this formulation allows us to undo changes that we have done through “adding flow” in the
revere direction. The residual capacity cf (u, v) represents how much flow we can send from u
to v in addition to the flow f .

We define Gf to be a residual network defined with respect to f , where V (Gf) = V (G) and
(u, v) ∈ E(Gf) if cf (u, v) > 0. Figure 2 shows G with the residual edges.

We will show that, if there is a path from s to t in Gf , then f is not a max flow. If no such
path exists, that f is a max flow.

Lemma 5. If t is not reachable from s is Gf , then f is a maximum flow.

4

Proof. Let S be the set of nodes reachable from s in Gf and T = V − S. There are no edges
in Gf from S to T since the nodes in T are not reachable from s. Note that (S, T) defines
an s-t cut. Now consider any v ∈ S,w ∈ T . We have cf (v , w) = 0 since (v , w) is not an
edge in Gf . There are three cases:

1. If (v , w) ∈ E, then by definition cf (v , w) = c(v , w) − f (v , w) = 0 =⇒ c(v , w) =

f (v , w).

2. If (w, v) ∈ E, then cf (v , w) = f (w, v) = 0.

3. If (v , w) /∈ E and (w, v) /∈ E, we can disregard (v , w) and (w, v) since they do not
appear in any flow or cut.

Using this, and the proof in Lemma 2, we have

|f | =
∑
v∈S

 ∑
x∈Nout(v)∩T

f (v , x)−
∑

y∈Nin(v)∩T

f (y , v)


=

∑
v∈S

∑
x∈Nout(v)∩T

f (v , x) [from case 2 the second term is 0]

=
∑
v∈S

∑
x∈Nout(v)∩T

c(v , x) [from case 1]

= c(S, T).

Thus, we show that the flow is equal to the cut. From Corollary 3 we know that f is a
maximum flow, and (S, T) is a min cut.

Lemma 6. If Gf has a path from s to t, we can modify f to f ′ such that |f | < |f ′|.

Proof. Pick a path P from s to t in Gf , and consider the edge of minimum capacity on the
path. Let that capacity be F . Then we can increase our flow by F . For each edge in P , if
cf (v , w) is the right direction (i.e., there is an edge (v , w) ∈ E(G)), then we can increase
our flow on this edge by F . If cf (v , w) is in the opposite direction (i.e., (w, v) ∈ E(G)), then
we can decrease the flow on this edge by F . In effect, we are “undoing” the flow on this edge.
By doing so, we have increased our flow by F .

As an example, consider Fig. 2 again. The path s → a→ c → b → t is a path with minimum
capacity 2. Therefore, we can update our flow and push additional 2 units of flow, resulting
in a flow of 18.

Formally, Let s = x0 → x1 → ... → xk = t be a simple path P in Gf , and let F =
mini cf (xi , xi+1). Define a new flow f ′ where

f ′(u, v) =


f (u, v) + F if (u, v) ∈ P,
f (u, v)− F if (v , u) ∈ P,
f (u, v) otherwise.

5

We now need to show that f ′ is a flow. The capacity constraints are satisfied because for
every (u, v) ∈ E,

1. If (u, v) ∈ P , then 0 ≤ f (u, v)+F ≤ f (u, v)+ cf (u, v) = f (u, v)+ c(u, v)− f (u, v) =
c(u, v).

2. If (v , u) ∈ P , then f (u, v)−F ≤ f (u, v) ≤ c(u, v) and f (u, v)−F ≥ f (u, v)−cf (v , u) =
0.

3. Otherwise, f (u, v) is from the original flow f .

The conservation constraints are also satisfied: Recall that P is a simple path. Thus, for
every v ∈ V − {s, t}, P uses 0 or two edges incident on v . If P uses 0 edges on v , then flow
values of the edges incident on v have not changed when going from f to f ′. Thus, suppose
that P uses two edges (x, v) and (v , y) incident on v . Because in Gf some edges appear in
the opposite direction compared to G, we need to consider a few cases.

1. (x, v) and (v , y) are both in the same direction (an edge into v and an edge out of v);
the flow into v increases by F and the flow out of it also increases by F .

2. (x, v) and (v , y) are both in the opposite direction ((v , x), (y , v) ∈ E); the flow into v
decreases by F and the flow out of it also decreases by F .

3. (x, v) is in the correct direction and (v , y) is in the opposite direction. Then the flow
into V changes by F − F = 0.

4. (x, v) is in the opposite direction and (v , y) is in the correct direction. Then the flow
out of V changes by F − F = 0.

Finally, note that we increase our flow by F . Consider the edge (s, x1) in P . If (s, x1) ∈ E, the
flow out of s increases by F . If (x1, s) ∈ E, the flow into s decreases by F . By our definition
of Gf , it must be that F > 0, and we get that |f ′| > |f |.

From this, we can construct an algorithm to find the maximum flow. Starting with some
arbitrary flow of the graph, construct the residual network, and check if there is a path from
s to t. If there is a path, update the flow, construct the new residual graph and repeat.
Otherwise, we have found the max flow.

A path from s to t in the residual graph is called an augmenting path, and pushing flow
through it to modify the current flow is referred to as augmenting along the path.

The run time of this algorithm is bounded by the number of times we update our flow. If the
edge capacities are all integers, we can increase the flow by at least 1 each time we update
our flow. Therefore, the runtime is O(|f |m) where |f | is the value of the max flow. If we have
rational edge capacities, then we can multiply all edge capacities by a factor to make them all
integers. However, the runtime blows up by that factor as well. If we have irrational edge
capacities, then the algorithm is no longer guaranteed to terminate. So we have a problem.

6

Algorithm 1: maxflow(G, s, t)

f ← all zeroes flow
Gf ← G
while t is reachable from s in Gf (check using, e.g., DFS or BFS) do
P ← path in Gf from s to t
F ← min capacity on P
f ← f ′ as defined in Lemma 6
Update Gf to correspond to new flow

return f

We will save the day in the next sections. Algorithm 1 is called the Ford-Fulkerson method. It
is actually part of a family of algorithms that depend on how the path P between s and t in
Gf is selected. One can obtain P via DFS, BFS, or any other method for selecting paths. It
turns out that two methods work particularly well: the shortest path method and the fattest
path method. The shortest path method is known as the Edmonds-Karp algorithm or Dinic’s
algorithm.

The fattest path method. This method finds a path between s and t that maximizes
mine∈P cf (e) among all s-t paths P . Finding such a path can be done in O(m + n) time by a
clever mix of linear time median-finding and DFS.

The shortest path method (the Edmonds-Karp algorithm/Dinic’s algorithm). This
method picks the path between s and t using BFS, thus picking a path that minimizes the
number of edges. Finding such a path also runs in O(m) time: BFS takes O(m+n) to explore
the whole graph, but since we only care about the vertices reachable from s this is O(m) time.

Since both methods of selecting a path run in linear time, the main question becomes, how
many iterations does Ford-Fulkerson perform? We will answer these questions below in the
next section.

7 Running time of various implementations of Ford-Fulkerson

Remark 7. We did not discuss the details of this section in class, but it’s in the notes for the
interested reader.

7.1 The fattest path version of Ford-Fulkerson

In this section we will show that the fattest path method results in a runtime of O(m(m +
n) log|f |) when run on a graph with integer capacities. Thus, when rational capacities are
converted to integers by multiplying by N, we get a runtime of O(m(m + n)(log|f |+ logN))
for rational capacities. Thus the effect of large N is mitigated. This method does not solve
the issues when the capacities can be irrational.

7

To show the runtime, we prove a main claim that states that after each iteration of the
algorithm, the maximum flow value in Gf goes down by a factor of (1− 1/m). This max flow
value starts as |f | since Gf = G in the beginning of the algorithm, and ends at 0 as in the end
s and t are disconnected.

Proposition 8 (Main). Let f ′ be the max flow in Gf . Then after one iteration of Ford-Fulkerson
on Gf , the max flow value becomes ≤ |f ′|(1− 1/m)..

Proof. Let P be the fattest path from s to t in Gf . Let F = mine∈P cf (e). Let S be the
nodes reachable from s in Gf via paths composed of edges with residual capacities > F . Thus,
any edge (x, y) of Gf with x ∈ S, y /∈ S must have cf (x, y) ≤ F . In particular, this means
that the size of the cut between S and V § is

∑
x∈S,y∈V \S cf (x, y) ≤ mF . Thus, the size of

the min s-t cut in Gf is at most mF .

By the max-flow-min-cut theorem from last lecture, the size of the min s-t cut is at least the
size of the max-flow |f ′| in Gf , and so |f ′| ≤ mF . Thus F ≥ |f ′|/m.

Now, when we augment (push flow) along P , the flow in G increases by F , while the
flow in Gf decreases by F . Thus, the new flow in Gf after augmenting along P becomes
|f ′| − F ≤ |f ′|(1− 1/m).

Now that the main claim has been proven, we can conclude with a discussion of the runtime.
Consider how the max flow value in Gf evolves after t iterations. It starts as |f | (where f is
the max flow in G) and then after t iterations is

≤ |f |(1− 1/m)t .

If t = m ln|f |, we get that the max flow value in Gf is

≤ |f |((1− 1/m)m)ln|f | < |f |(1/e)ln|f | = 1.

Since all the capacities are integers, all the residual capacities are also integers, and so the
max flow value in Gf is an integer. Since it is < 1, it must be 0. Hence after m ln|f | iterations,
the max flow value in Gf is zero, s and t are disconnected and the computed flow in G is
maximum. The runtime is O((m + n)m log|f |).

7.2 The shortest path version of Ford-Fulkerson

Here we analyze running Ford-Fulkerson using BFS to find a path between s and t in Gf .

With each augmentation along a path P in Gf , at least one edge is removed from Gf , namely
the edge with residual capacity F = mine∈P cf (e). The main claim that we need to prove the
runtime is that the number of times an edge can be removed from Gf is small. Since each
iteration of the algorithm causes at least one removal, the main proposition will show that
the number of iterations is small and hence the runtime is small as well.

Proposition 9 (Main). Fix any (u, v) that is ever an edge in Gf . Then the number of times
that (u, v) can disappear from Gf is at most n/2.

8

Once this proposition is proven, we would get that the total number of edge disappearances is
at most mn/2 and hence the number of iterations of the algorithm is also ≤ mn/2. Because
of this, the algorithm’s runtime is O((m + n)mn).

To prove the proposition, we will need a useful lemma (see below) that shows that as Gf
evolves through the iterations, for any v , the (unweighted) distance from s to v in Gf cannot
go down. Let’s begin with some notation. Let G if be the residual network after the i-th
iteration of the algorithm; G0f = G. For a vertex v , let di(v) be the (unweighted) distance
from s to v in G if .

Lemma 10. For all i ≥ 1, and all v ∈ V , di−1(v) ≤ di(v).

Proof. Fix i . We will prove the statement for i by induction on d = di(v).

The inductive hypothesis is that for all d and all v with di(v) = d , di−1(v) ≤ di(v). The base
case is d = 0. We note that if di(v) = 0, then v = s since we view G if as an unweighted
graph. But then we also have di−1(s) = 0 ≤ di(s).

For the induction, let’s assume that the inductive hypothesis holds for d − 1, i.e. that for all
x with di(x) = d − 1, di−1(x) ≤ di(x). We want to show that for all v with di(v) = d , we
also have di−1(v) ≤ di(v).

Consider some v with di(v) = d . Let u be the node just before v on a shortest s − v path
in G if . Then, di(u) = di(v) − 1 = d − 1 and the inductive hypothesis applies to it so that
di−1(u) ≤ di(u).

We consider two cases.

Case 1. (u, v) ∈ G i−1f . Then, by the triangle inequality in G i−1f , we have that di−1(v) ≤
di−1(u) + 1. Since di−1(u) ≤ di(u), we get that

di−1(v) ≤ di(u) + 1 = (di(v)− 1) + 1 = di(v).

Case 2. (u, v) /∈ G i−1f . Then, since (u, v) ∈ G if , we must have that (v , u) was on the
(i − 1)st augmenting path. Hence di−1(u) = di−1(v) + 1. Hence:

di−1(v) = di−1(u)− 1 ≤ di(u)− 1 = di(v)− 2 ≤ di(v).

In both cases di−1(v) ≤ di(v) and the induction is complete.

Now we are ready to prove the main proposition.

Fix some (u, v) that is an edge in Gf at some point. Let’s consider two consecutive disappear-
ances of (u, v). Suppose that (u, v) ∈ Gi but (u, v) /∈ Gi+1. If after this disappearance (u, v)
had another one later on, then at some point (u, v) must have appeared in Gf again. Let j be
the first iteration after i so that the jth augmenting path made (u, v) appear in G j+1f .

9

Because (u, v) ∈ G if but (u, v) /∈ G i+1f , (u, v) must have been in the i-th augmenting path Pi .
Because (u, v) /∈ G jf but (u, v) ∈ G j+1f , (v , u) must have been in the j-th augmenting path Pj .

From this we obtain that di(v) = di(u) + 1 and dj(u) = dj(v) + 1. Using the fact that j > i
and the key lemma from above we obtain

dj(u) = dj(v) + 1 ≥ di(v) + 1 = di(u) + 2.

Thus, between (u, v)’s disappearance and its next reappearance, the distance from s to u
increased by +2. Hence between any two consecutive disappearances the distance to u
increases by ≥ 2. The distance starts as ≥ 0 and can be ≤ n − 1 before becoming ∞. Thus
the total number of disappearances of (u, v) is ≤ n/2. This completes the proof of the main
claim and the proof of the runtime.

8 Applications

We wrap up by talking about some applications of the Ford-Fulkerson algorithm.

8.1 Bipartite perfect matching

Let G = (V, E) be an undirected, unweighted bipartite graph: the set of vertices is partitioned
into V1 and V2 so that there are no edges with two endpoints entirely in V1 or entirely in V2.
A matching in G is a collection of edges, no two of which share an end point. A perfect
matching is a matching M such that every node in V has exactly one incident edge in M.
In order for G to have a perfect matching, we need that |V1| = |V2|. The perfect matching
problem is, given a bipartite graph G with |V1| = |V2| = n and on m edges, determine whether
G has a perfect matching.

We will solve the bipartite perfect matching problem by creating an instance of max flow and
using Ford-Fulkerson’s algorithm.

Given G = (V1 ∪ V2, E), direct all the edges in E from V1 to V2. Add two extra nodes s and
t. Add (directed) edges from s to every node in V1 and from every node of V2 to t. In this
new graph H, let all the edge capacities be 1 and then run the Ford-Fulkerson algorithm to
compute the max flow.

Suppose that G has a perfect matching M. Then, H has max flow value n = |V1| = |V2|. This
is because we can set f (e) = 1 for every e ∈ M, ell the edges out of s and all the edges out
of t. All other flow values are 0. The capacity constraints are trivially satisfied. The flow
conservation constraints are satisfied since for every x ∈ V1 there is exactly one edge (s, x)
into x that has flow 1, and exactly one edge (x, y) ∈ M with flow 1; similarly for every x ∈ V2
there is exactly one edge (x, t) out of x that has flow 1, and exactly one edge (y , x) ∈ M
with flow 1.

Suppose now that Ford-Fulkerson returns a flow f of value n. Hence f (s, x) = f (y , t) = 1 for
all x ∈ V1, y ∈ V2. Because Ford-Fulkerson causes all flow values on the edges to be integers,

10

the flow values on all edges are either 1 or 0. Because of this, every node x ∈ V1 gets flow of
1 going into it and a flow of 1 needs to come out so that there is a single edge (x, y) that
has flow value 1 and all other edges out of x have flow value 0. Similarly, for every y ∈ V2
there is a unique edge into y with positive flow value 1. The edges in V1 ∪ V2 with positive
flow through them must hence form a perfect matching.

8.2 More applications

There are many applications of max-flow and min-cut! We may talk about a few more in class
if time (check the slides).

11

	History of Flows and Cuts
	Formulation of the Maximum Flow Problem
	Example
	Formulation of the Minimum Cut Problem
	The Max-Flow Min-Cut Theorem
	The Ford-Fulkerson Max-Flow Algorithm
	Running time of various implementations of Ford-Fulkerson
	The fattest path version of Ford-Fulkerson
	The shortest path version of Ford-Fulkerson

	Applications
	Bipartite perfect matching
	More applications

