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What is path-relinking?
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Path-relinking is a search intensification strategy to explore trajectories connecting elite solutions
(i.e., high-quality solutions) of combinatorial optimization problems.

It is a major enhancement to heuristic search methods for solving combinatorial optimization
problems.

Its hybridization with other metaheuristics leads to significant improvements in both solution quality
and running times of hybrid heuristics.



Template and mechanics of path-relinking
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As previously introduced, in the search space graph G = (F ,M):

Its nodes correspond to the set F of feasible solutions.

There is an edge (S , S ′) ∈ M if and only if S ∈ F , S ′ ∈ F , S ′ ∈ N(S), and S ∈ N(S ′), where
N(S) ⊆ F is the neighborhood of S .

Path-relinking is usually carried out between two solutions in F : one is the initial solution S i , while the
other is the guiding solution Sg .

One or more paths connecting these solutions in G can be explored by path-relinking in the search for
better solutions.

Local search is often applied to the best solution in each of these paths since there is no guarantee that
this solution is locally optimal.
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Restricted neighborhoods
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Let S ∈ F be any solution (i.e., a node) on a path in G leading from the initial solution S i ∈ F to
the guiding solution Sg ∈ F .

Path-relinking restricts its possible choices to the feasible solutions in N(S) that are more similar to
Sg than S is.

Let N(S : Sg ) ⊆ N(S) be this restricted neighborhood, which is therefore defined exclusively by
moves that introduce in S attributes of the guiding solution Sg that do not appear in S .

The elements of the ground set E that appear in S but not in Sg are those that must be removed
from the current solution S in a path leading to Sg .

Similarly, the elements of the ground set E that appear in Sg but not in S are those that must be
incorporated into S in a path leading to Sg .

The restricted neighborhood N(S : Sg ) is formed by all feasible solutions in N(S) that may appear in
a path from S to Sg .

After evaluating each potential move leading to a feasible solution in N(S : Sg ), the most common
strategy is a greedy approach, where one selects the move resulting in a best-quality restricted
neighbor of S that is closer to Sg than S is.
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Minimum spanning tree problem – Restricted neighborhood

Universidade Federal Fluminense Path-relinking Metaheuristics – May 2019 6 / 39

f (S) = 35 f (Sg ) = 32



E1 = {(3, 4), (1, 3), (2, 5)}:
edges in Sg but not in S

E2 = {(2, 4), (1, 2), (1, 5)}:
edges in S but not in Sg

If N is a swap neighborhood, then there are nine
moves. However, only four of the solutions
resulting from these moves are feasible in the
restricted neighborhood N(S : Sg ).
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Traveling salesman problem – Restricted neighborhood
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f (S) = 17 f (Sg ) = 18



S(1) = Sg (1) = 1.

There are four misplaced cities between S and Sg .

Each neighbor of the current solution S is obtained
by a move consisting of the exchange of two cities
in different positions.

Four out of the six solutions in neighborhood N(S)
also belong to the restricted neighborhood
N(S : Sg ).
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Knapsack problem – Restricted neighborhood
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Considering the optimization version of the knapsack problem, one has a set I = {1, . . . , n} of items
to be placed in a knapsack.

Integer numbers ai and ci represent, respectively, the weight and the utility of each item i ∈ I .

Let b be the maximum total weight that can be taken in the knapsack and assume that
ai ≤ b ∀i ∈ I .

Every solution S of the knapsack problem can be represented by a binary vector (x1, . . . , xn), in
which xi = 1 if item i is selected, xi = 0 otherwise, for every i = 1, . . . , n. A solution
S = (x1, . . . , xn) is feasible if

∑
i∈I ai · xi ≤ b.



Knapsack problem – Restricted neighborhood
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Example: Four items are available to be placed in a knapsack of capacity 19.



Knapsack problem – Restricted neighborhood
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There are four moves in a path leading from S
to Sg , because these two solutions differ in all
elements.

There are four possible neighbors in N(S), each
of them corresponding to flipping the value of
one variable of the current solution S .

However, the restricted neighborhood
N(S : Sg ) contains only two feasible solutions.
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A template for forward path-relinking
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The pseudo-code shows a template of a
forward path-relinking algorithm for
minimization problems.

It is assumed that the guiding solution Sg

is at least as good as (and possibly better
than) the initial solution S i .

In most cases, N(S : Sg ) does not have to
be explicitly computed and stored:
instead, its elements may only be
implicitly enumerated on-the-fly.

The best restricted neighbor solution of
the current solution is selected at each
iteration.

A local search is applied to the best
solution found, because it may not be
locally optimal.

begin FORWARD-PR(S i , Sg );
1 S ← S i ;
2 S∗ ← S ;
3 f ∗ ← f (S);
4 while |N(S : Sg )| ≥ 1 do
5 S ← argmin{f (S ′) : S ′ ∈ N(S : Sg )};
6 if f (S) < f ∗ then
7 S∗ ← S ;
8 f ∗ ← f (S);
9 end-if;
10 end-while;
11 Apply local search to improve the best solution S∗;
12 return S∗, f (S∗);
end FORWARD-PR(S i ,Sg ).



Knapsack problem – Forward path-relinking
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Example of forward
path-relinking applied to
the previous instance of
the knapsack problem
with four items and
capacity 19.



Other implementation strategies for path-relinking
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Strategies: Forward path-relinking, backward, back-and-forward, mixed, truncated, greedy randomized
adaptive, external, and evolutionary path-relinking, together with their hybrids. All these strategies
involve trade-offs between computation time and solution quality.

(a) Forward path-relinking:
a path is traversed from the initial
solution S i to a guiding solution

Sg at least as good as S i .

(b) Backward path-relinking:
a path is traversed from the initial
solution S i to a guiding solution
Sg that is not better than S i .

(c) Mixed path-relinking:
two subpaths are traversed, one

starting at S i and the other at Sg ,
which eventually meet in the

middle of the trajectory connecting
S i and Sg .
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Backward and back-and-forward path-relinking
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In backward path-relinking, the guiding solution Sg is not better than the initial solution S i .

In back-and-forward path-relinking, backward path-relinking is applied first, followed by forward
path-relinking.

Backward path-relinking usually tends to perform better than forward path-relinking, because it is
more likely to find an improving solution in the restricted neighborhood of the better solution than in
that of the worse.

Back-and-forward path-relinking does at least as well as either backward or forward path-relinking,
but takes about twice as long to compute, since two (usually distinct) paths of the same length are
traversed.

Computational experiments have confirmed that backward path-relinking usually outperforms forward
path-relinking in terms of solution quality, while back-and-forward path-relinking finds solutions at
least as good as forward or backward path-relinking, but at the expense of longer running times.



Backward and back-and-forward path-relinking
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Time-to-target plots for pure GRASP and three variants of GRASP with path-relinking (forward,
backward, and back-and-forward) on an instance of a routing problem in private virtual networks:
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The plots show that GRASP
with backward path-relinking
outperformed the other
path-relinking variants as well
as the pure GRASP heuristic,
which was the slowest to find a
solution whose value is at least
as good as the target value.



Mixed path-relinking
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In applying mixed path-relinking between two feasible solutions S i and Sg , the connecting path is
explored from both extremities.

At each iteration of path-relinking, the closest extremity to the new current solution alternates
between the original initial solution S i and the original guiding solution Sg .

The search behaves as if solutions in two different subpaths were visited alternately.

These two subpaths meet at some feasible solution in the middle of the trajectory, thus connecting
S i and Sg with a single path.

In this case, the qualification of a solution as being the initial or the guiding solution is meaningless,
since the procedure behaves as if they keep permanently interchanging their role until the end.



Mixed path-relinking
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Example: Mixed path-relinking between two solutions S i and Sg for which the path connecting them is
formed by five arcs: numbers above the arrows represent the order in which the moves are performed.
Moves alternate between the subpath leaving from the left and the subpath leaving from the right.



Mixed path-relinking
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The pseudo-code shows a template of a
mixed path-relinking algorithm between
solutions S i and Sg for minimization
problems.

It is basically the same of algorithm
FORWARD-PR, except for lines 10 to 12,
in which the direction of the path is
reversed by the exchange of the roles of
the guiding and current solutions.

begin MIXED-PR(S i , Sg );
1 S ← S i ;
2 S∗ ← S ;
3 f ∗ ← f (S∗);
4 while |N(S : Sg )| ≥ 1 do
5 S ← argmin{f (S ′) : S ′ ∈ N(S : Sg )};
6 if f (S) < f ∗ then
7 S∗ ← S ;
8 f ∗ ← f (S);
9 end-if;
10 S ′ ← S ;
11 S ← Sg ;
12 Sg ← S ′;
14 end-while;
14 Apply local search to improve the best solution S∗;
15 return S∗, f (S∗);
end MIXED-PR.



Mixed path-relinking
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Observations:

Back-and-forward path-relinking thoroughly explores both restricted neighborhoods of S i and Sg .

The mixed variant explores the entire restricted neighborhood of S i and all but one solution of the
restricted neighborhood of Sg .

In contrast, forward and backward path-relinking, each of them fully explore only one of the
restricted neighborhoods.

Furthermore, mixed path-relinking explores half as many restricted neighbors as back-and-forward
path-relinking and the same number of neighbors as either the backward or forward variants.



Mixed path-relinking
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Time-to-target plots for pure GRASP and four variants of GRASP with path-relinking (forward, backward,
back-and-forward, and mixed) on an instance of the 2-path network design problem.
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Mixed path-relinking
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The time-to-target plots show that GRASP with mixed path-relinking has the best run time profile among
the variants compared.
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Truncated path-relinking
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One can expect to see most solutions produced by path-relinking to come from subpaths that are close to
either the initial or the guiding solution.

The figure shows the fraction
of the best solutions found by
GRASP with back-and-forward
path-relinking that appear in
each range of the path length
from the initial to the guiding
solutions on two-minute runs
over 80 instances of the
max-min diversity problem.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

fr
a
c
ti
o
n
 o

f 
b
e
s
t 
s
o
lu

ti
o
n
s
 f
o
u
n
d
 i
n
 r

a
n
g
e

range of path length in percent

0.518

0.018

0.166
0.140



Truncated path-relinking
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54% of the best solutions
were found in subpaths
that originate at the initial
solutions and appear
within the first 20% of the
total number of moves
performed.

31% are close to the
guiding solutions and
appear in the last 20% of
the moves performed in
each path.
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Truncated path-relinking
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Exploring only the subpaths near the extremities often produces solutions as good as those found by
exploring the entire path, since there is a higher concentration of better solutions close to the initial
and guiding solutions explored by path-relinking.

It is straightforward to adapt path-relinking to explore only the restricted neighborhoods that are
close to the extremities.

Truncated path-relinking can be applied to either forward, backward, backward-and-forward, or
mixed path-relinking: instead of exploring the entire path, it just explores a fraction of the path and,
consequently, takes a fraction of the running time.



Minimum distance required for path-relinking
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Let’s assume that assume that we want to connect two locally optimal solutions S1 and S2 with
path-relinking:

If S1 and S2 differ by only one of their components, then the path directly connects the two
solutions and no solution, other than S1 and S2, is visited.

I Since S1 and S2 are both local minima, then f (S1) ≤ f (S) for all S ∈ N(S1) and f (S2) ≤ f (S) for all
S ∈ N(S2), where N(S) denotes the neighborhood of solution S .

If S1 and S2 differ by exactly two moves, then any path between S1 and S2 visits exactly one
intermediary solution S ∈ N(S1) ∩ N(S2). Consequently, solution S cannot be better than either S1

or S2.

If S1 and S2 differ by exactly three moves, then any path between them visits two intermediary
solutions S ∈ N(S1) and S ′ ∈ N(S2) and, consequently, neither S nor S ′ can be better than both S1

and S2.

Consequently, we can discard the application of path-relinking to pairs of solutions differing by less than
four moves.
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Dealing with infeasibilities in path-relinking
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Consider line 5 of a path-relinking
template shown earlier, where we
minimize f (S), for S ∈ F .

This step selects the best restricted
neighbor of the current solution as
argmin{f (S ′) : S ′ ∈ N(S : Sg )}.

However, it may occur that all moves
from the current solution S lead to
infeasible solutions, i.e., N(S : Sg ) = ∅
and the result of the argmin operator is
undefined.

In this situation, path-relinking would
have to stop.

begin FORWARD-PR(S i , Sg );
1 S ← S i ;
2 S∗ ← S ;
3 f ∗ ← f (S);
4 while |N(S : Sg )| ≥ 1 do
5 S ← argmin{f (S ′) : S ′ ∈ N(S : Sg )};
6 if f (S) < f ∗ then
7 S∗ ← S ;
8 f ∗ ← f (S);
9 end-if;
10 end-while;
11 Apply local search to improve the best solution S∗;
12 return S∗, f (S∗);
end FORWARD-PR(S i ,Sg ).



Example: Path-relinking for a maximum independent
set problem (i.e., seek a set of mutually nonadjacent
nodes of maximum cardinality) on a bipartite graph
with six nodes.

The initial solution is S i = {A,B,C} and the
guiding solution is Sg = {D,E ,F}.

The neighborhood is characterized by moves
defined as swap(out, in), where the node out is
replaced by the node in in the solution.

First iteration: all nine restricted neighbors of the initial
solution are infeasible.

Possible strategy: Move to a least-infeasible solution (a
greedy path-relinking operator).
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Example: Path-relinking for a maximum
independent set problem (i.e., seek a set of mutually
nonadjacent nodes of maximum cardinality) on a
bipartite graph with six nodes.

The current solution is S = {C ,D,E} and the
guiding solution is Sg = {D,E ,F}.

The neighborhood is characterized by moves
defined as swap(out, in), where the node out is
replaced by the node in in the solution.

Third iteration: the path finally reaches the guiding
solution.

In this example, all restricted neighbors on all paths from the initial solution to the target solution are
infeasible. In general, however, some may be feasible, some infeasible.
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In a revised path-relinking operator that allows moves to infeasible solutions, each visited solution S may
be in either one of two possible situations:

At least one move from S leads to a feasible solution, in which case |N(S : Sg )| ≥ 1.

I A greedy version of path-relinking selects a move that leads to a least cost feasible neighbor of S .

All restricted moves lead to infeasible solutions and the restricted neighborhood N(S : Sg ) becomes
empty before the guiding solution is reached.

I A greedy version of path-relinking selects a move that leads to an infeasible neighbor of S with
minimum infeasibility.
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The pseudo-code presents a revised template of a
mixed path-relinking procedure for minimization
problems, that allows feasible and infeasible
moves.

It is very similar to the template MIXED-PR,
with the main difference corresponding to
lines 4 to 10.

Both feasible and infeasible moves are
allowed in the neighborhood N(S).

Line 5 detects if there is at least one move
that once applied to S leads to a feasible
solution.

Let by infeasibility(S) a measure of the
degree of infeasibility of a solution S .

Line 8 selects the best infeasible neighbor of
the current solution.

begin MIXED-PR-INFEASIBLE-MOVES(S i ,Sg );
1 S ← S i ;
2 S∗ ← S ;
3 f ∗ ← f (S∗);
4 while |N(S)| > 1 do
5 if N(S : Sg ) 6= ∅ then
6 S ← argmin{f (S ′) : S ′ ∈ N(S : Sg )};
7 else
8 S ← argmin{infeasibility(S ′) : S ′ ∈ N(S)};
9 end-if;
10 if S is feasible and f (S) < f ∗ then
11 S∗ ← S ;
12 f ∗ ← f (S);
13 end-if;
14 S ′ ← S ;
15 S ← Sg ;
16 Sg ← S ′;
17 end-while;
18 Apply local search to improve the best solution S∗;
19 return S∗, f (S∗);
end MIXED-PR-INFEASIBLE-MOVES.
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All previously described path-relinking strategies follow a greedy criterion to select the best move at
each of their iterations.

Therefore, path-relinking is limited to exploring a single path from a set of exponentially many paths
between any pair of solutions.

By adding randomization to path-relinking, greedy randomized adaptive path-relinking is not
constrained to explore a single path.

Instead of always selecting the move that results in the best solution, a restricted candidate list is
constructed with the moves that result in promising solutions with costs in an interval that depends
on the values of the best and worst moves, as well as on a parameter in the interval [0, 1]. A move is
selected at random from this set to produce the next solution in the path.

By applying this strategy several times to the initial and guiding solutions, several paths can be
explored. This strategy is useful when path-relinking is applied more than once to the same pair of
solutions as it may occur in evolutionary path-relinking.
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So far in this presentation, we have considered variants of path-relinking in which a path in the
search space graph G = (F ,M) connects two feasible solutions S ,T ∈ F by progressively introducing
in one of them (the initial solution) attributes of the other (the guiding solution).

Since attributes common to both solutions are not changed and all solutions visited belong to a path
between the two solutions, we may also refer to this type of path-relinking as internal path-relinking .
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External path-relinking extends any path connecting S and T in G = (F ,M) beyond its extremities.

To extend such a path beyond S , attributes not present in either S or T are introduced in S .

Symmetrically, to extend it beyond T , attributes not present in either S or T are introduced in T .

In its greedy variant, all moves are evaluated and the solution chosen to be next in the path is one
with best cost or, in case they are all infeasible, the one with least infeasibility.

In either direction, the procedure stops when all attributes that do not appear in either S or T have
been tested for extending the path.

Once both paths are complete, local search may be applied to the best solution in each of them.

The best of the two local minima is returned as the solution produced by the external path-relinking
procedure.
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A parallel between internal and external path-relinking:

Since internal path-relinking works by fixing all attributes common to the initial and guiding
solutions and searches for paths between them satisfying this property, it is clearly an intensification
strategy.

Contrarily, external path-relinking progressively removes common attributes and replaces them by
others that do not appear in either one of the initial or guiding solution.

I Therefore, it can be seen as a diversification strategy which produces solutions increasingly farther from
both the initial and the guiding solutions.

I External path-relinking becomes therefore a tool for search diversification.



Concluding remarks
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The material in this talk is taken from

Chapter 8 – Path-relinking

of our book, Optimization by GRASP: Greedy Ran-
domized Adaptive Search Procedures (Resende &
Ribeiro, Springer. 2016).


