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Time-to-target plots

Runtime distribution of GRASP

Comparing algorithms with exponential runtime distributions

Comparing algorithms with general runtime distributions

Numerical applications to sequential algorithms

I DM-D5 and GRASP algorithms for server replication

I Multistart and tabu search algorithms for routing and wavelength assignment

I GRASP algorithms for 2-path network design

Comparing and evaluating parallel algorithms
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Runtime distributions or time-to-target plots display on the ordinate axis the probability that an
algorithm will find a solution at least as good as a given target value within a given running time,
shown on the abscissa axis.

They provide a very useful tool to characterize the running times of stochastic algorithms for
combinatorial optimization problems and to compare different algorithms or strategies for solving a
given problem.

They have been widely used as a tool for algorithm design and comparison.
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Let P be an optimization problem and H a randomized heuristic for this problem.

Furthermore, let I be a specific instance of P and let look4 be a solution cost target value for this
instance.

Heuristic H is run N times on the fixed instance I and the algorithm is made to stop as soon as a
solution whose objective function is at least as good as the given target value look4 is found.

For each of the N runs, the random number generator used in the implementation of the heuristic is
initialized with a distinct seed and, therefore, the runs are assumed to be independent.

The solution time of each run is recorded and saved.

To compare their empirical and theoretical distributions, we follow a standard graphical methodology
for data analysis.

This methodology is used to produce the time-to-target plots (TTT-plots).
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After concluding the N independent runs,
solution times are sorted in increasing
order.

The i-th sorted solution time ti is
associated with a probability
pi = (i − 1/2)/N, and the points
zi = (ti , pi ), for i = 1, . . . ,N, are plotted.

The figure illustrates this estimated
cumulative probability distribution plot for
problem P, a GRASP heuristic H,
instance I, and target look4 .

Observation: The probability that the
heuristic finds a solution at least as good
as the target value in at most 416 seconds
is about 50%, in at most 1064 seconds is
about 80%, and in at most 1569 seconds
is about 90%.
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The previous plot appears to fit an exponential distribution, or more generally, a shifted exponential
distribution.

To estimate the parameters of this two-parameter exponential distribution, we first draw the
theoretical quantile-quantile plot (or Q-Q plot) for the data.

To describe Q-Q plots, we recall that the cumulative distribution function for the two-parameter
exponential distribution is given by:

F (t) = 1− e−(t−µ)/λ

I λ is the mean of the distribution data (and also is the standard deviation of the data).

I µ is the shift of the distribution with respect to the ordinate axis.
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The quantiles of the data of an empirical distribution are derived from the (sorted) raw data, which
in our case are N measured (sorted) running times.

Quantiles are cutpoints that group a set of sorted observations into classes of equal (or
approximately equal) size.

For each value pi , i = 1, . . . ,N, we associate a pi -quantile q(pi ) of the theoretical distribution.

For each pi -quantile we have, by definition, that F ((q(pi )) = pi .

Hence, q(pi ) = F−1(pi ) and therefore, for the two-parameter exponential distribution, we have
q(pi ) = −λ · ln(1− pi ) + µ.

Note that if we were to use pi = 1/N, for i = 1, . . . ,N, then q(pN) would be undefined.
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A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by plotting the quantiles of
the data of an empirical distribution against the quantiles of a theoretical distribution. This involves
three steps:

I First, the data (in this case, the measured solution times) are sorted in ascending order.

I Second, the quantiles of the theoretical exponential distribution are obtained.

I Finally, a plot of the data against the theoretical quantiles is made.

In a situation where the theoretical distribution is a close approximation of the empirical distribution,
the points in the Q-Q plot will have a nearly straight configuration.

In a plot of the data against a two-parameter exponential distribution with λ = 1 and µ = 0, the
points would tend to follow the line y = λ̂ · x + µ̂.

Consequently, parameters λ and µ of the two-parameter exponential distribution can be estimated,
respectively, by the slope λ̂ and the intercept µ̂ of the line depicted in the Q-Q plot.
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The Q-Q plot shown is obtained by
plotting the measured times in the
ordinate against the quantiles of a
two-parameter exponential distribution
with λ = 1 and µ = 0 in the abscissa,
given by q(pi ) = − ln(1− pi ), for
i = 1, . . . , n.

To avoid possible distortions caused by
outliers, we do not estimate the
distribution mean with the data mean or
by linear regression on the points of the
Q-Q plot.

Instead, we estimate the slope λ̂ of the
line y = λ · x + µ using the upper quartile
qu and lower quartile ql of the data.
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The upper quartile qu and lower quartile
ql are, respectively, the q(1/4) and q(3/4)
quantiles.

We take λ̂ = (zu − zl)/(qu − ql) as an
estimate of the slope, where zu and zl are
the u-th and l-th points of the ordered
measured times, respectively.

This informal estimation of the
distribution of the measured data mean is
robust since it will not be distorted by a
few outliers.

Consequently, the estimate for the shift is
µ̂ = zl − λ̂ql .



Runtime distribution of GRASP

Universidade Federal Fluminense Runtime distributions Metaheuristics – May 9, 2019 11 / 73

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

m
e

a
s
u

re
d

 t
im

e
s

exponential quantiles

To analyze the straightness of the Q-Q
plots, we superimpose them with
variability information.

For each plotted point, we show plus and
minus one standard deviation in the
vertical direction from the line fitted to
the plot.

An estimate of the standard deviation for
point zi , i = 1, . . . , n, of the Q-Q plot is

σ̂ = λ̂[pi/(1− pi )n]
1
2 .

The figure shows an example of a Q-Q
plot with superimposed variability
information.
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When observing a theoretical quantile-quantile plot with superimposed standard deviation
information, one should avoid turning such information into a formal test.

One important fact that must be kept in mind is that the natural variability of the data generates
departures from the straightness, even if the model of the distribution is valid.

The most important reason for portraying standard deviation is that it gives us a sense of the
relative variability of the points in the different regions of the plot.

However, since one is trying to make simultaneous inferences from many individual inferences, it is
difficult to use standard deviations to judge departures from the reference distribution.

For example, the probability that a particular point deviates from the reference line by more than two
standard deviations is small.

However, the probability that any of the points deviates from the line by two standard deviations is
probably much greater.
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In order statistics, this is made more difficult by the high correlation that exists between neighboring
points.

If one plotted point deviates by more than one standard deviation, there is a good chance that a
whole bunch of them will too.
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Another point to keep in mind is that standard deviations
vary substantially in the Q-Q plot.

As one can observe in the previous Q-Q plot, the standard
deviation of the points near the high end is substantially
larger than the standard deviation of the points near the
other end.
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Once the two parameters of the
distribution have been estimated, a
superimposed plot of the empirical and
theoretical distributions can be made.

The figure depicts the superimposed
empirical and theoretical distributions
corresponding to the Q-Q plot in the
previous figure.

The runtime distribution of a pure GRASP
heuristic has been shown experimentally
to behave as a random variable that fits
an exponential distribution.
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However, in the case of more elaborate
heuristics where setup times are not
negligible, the runtimes fit a
two-parameter or shifted exponential
distribution.

Therefore, the probability density function
of the time-to-target random variable is
given by f (t) = (1/λ) · e−t/λ in the first
case (exponential distribution) and by
f (t) = (1/λ) · e−(t−µ)/λ in the second
(shifted exponential distribution), with the
parameters λ ∈ R+ and µ ∈ R+ being
associated with the shape and the shift of
the exponential function, respectively.
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The figure illustrates this result, depicting
the superimposed empirical and theoretical
distributions observed for an instance of
the maximum covering problem where one
wants to choose 500 out of 1000 facility
locations such that, of the 10,000
customers, the sum of the weights of
those that are covered is maximized.

The best known solution for this instance
is 33,343,542 and the target solution value
used was 33,339,175 (about 0.01% off of
the best known solution).
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However, if path-relinking is applied as an intensification step at the end of each GRASP iteration,
then the iterations are no longer independent and the memoryless characteristic of GRASP is
destroyed.

This also happens in the case of cooperative parallel implementations of GRASP.

Consequently, the time-to-target random variable may not fit an exponential distribution in such
situations.

This result is illustrated by two implementations of GRASP with bidirectional path-relinking:

I The first is an application to the 2-path network design problem.

I The second is an application to the three-index assignment problem.
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The figure depicts the runtime distribution and the corresponding quantile-quantile plot for GRASP with
bidirectional path-relinking of an instance of the 2-path network design problem with 80 nodes and 800
origin-destination pairs, with target set to 588.
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(a) Runtime distribution
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The figure shows the runtime distribution and the corresponding quantile-quantile plot for GRASP with
bidirectional path-relinking on Balas and Saltzman problem 22.1, with the target value set to 8.
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The figure shows the runtime distribution and the corresponding quantile-quantile plot for GRASP with
bidirectional path-relinking on Balas and Saltzman problem 24.1, with the target value set to 7.
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Observations:

For both heuristics and these three example instances, we observe that points steadily deviate by
more than one standard deviation from the estimate for the upper quantiles in the quantile-quantile
plots.

I That is, many points associated with large computation times fall outside the plus or minus one
standard deviation bounds.

Therefore, we cannot say that these runtime distributions are exponentially distributed.
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We assume the existence of two randomized algorithms A1 and A2 for the approximate solution of
some optimization problem.

Furthermore, we assume that their solution times fit exponential (or shifted exponential)
distributions.

We denote by X1 (resp. X2) the continuous random variable representing the time needed by
algorithm A1 (resp. A2) to find a solution as good as a given target value:

X1 7→
{

0, τ < T1

λ1 · e−λ1(τ−T1), τ ≥ T1

and

X2 7→
{

0, τ < T2

λ2 · e−λ2(τ−T2), τ ≥ T2

where T1, λ1, T2, and λ2 are parameters (λ1 and λ2 define the shape of each shifted exponential
distribution, whereas T1 and T2 denote by how much each of them is shifted).
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The figure depicts the
cumulative probability
distribution and the probability
density function of the random
variable X1.
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Since both algorithms stop when they find a solution at least as good as the target, we can say that
algorithm A1 performs better than A2 if the former stops before the latter.

Therefore, we must evaluate the probability Pr(X1 ≤ X2) that the random variable X1 takes a value
smaller than or equal to X2.

Conditioning on the value of X2 and applying the total probability theorem, we obtain

Pr(X1 ≤ X2) =

∫ ∞
−∞

Pr(X1 ≤ X2|X2 = τ) · fX2 (τ) · dτ =

=

∫ ∞
T2

Pr(X1 ≤ X2|X2 = τ) · λ2 · e−λ2(τ−T2) · dτ =

∫ ∞
T2

Pr(X1 ≤ τ) · λ2 · e−λ2(τ−T2) · dτ.

Let ν = τ − T2. Then, dν = dτ and

Pr(X1 ≤ X2) =

∫ ∞
0

Pr(X1 ≤ (ν + T2)) · λ2 · e−λ2ν · dν. (1)
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Using the formula of cumulative probability function of the random variable X1 (see previous figure ), we
obtain

Pr(X1 ≤ (υ + T2)) = 1− e−λ1(υ+T2−T1). (2)

Replacing (2) in (1) and solving the integral, we conclude that

Pr(X1 ≤ X2) = 1− e−λ1(T2−T1) · λ2

λ1 + λ2
. (3)

This result can be better interpreted by rewriting expression (3) as

Pr(X1 ≤ X2) = (1− e−λ1(T2−T1)) + e−λ1(T2−T1) · λ1

λ1 + λ2
. (4)

The first term of the right-hand side of equation (4) is the probability that 0 ≤ X1 ≤ T2, in which
case X1 is clearly less than or equal to X2.

The second term is given by the product of the factors e−λ1(T2−T1) and λ1/(λ1 + λ2), in which the
former corresponds to the probability that X1 ≥ T2 and the latter to the probability that X1 be less
than or equal to X2, given that X1 ≥ T2.
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To illustrate the above result, we consider two algorithms for solving the server replication for reliable
multicast problem.

I Algorithm A1 is an implementation of pure GRASP with α = 0.2.

I Algorithm A2 is a pure GRASP heuristic with α = 0.9.

The runs were performed on an Intel Core2 Quad with 2.40 GHz of clock speed and 4 GB of RAM
memory.
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The figure depicts the runtime distributions of each algorithm, obtained after 500 runs with different
seeds of an instance of the server replication for reliable multicast problem with m = 25 and the target
value set at 2830.
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(a) Pure GRASP with α = 0.2
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(b) Pure GRASP with α = 0.9
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The parameters of the two distributions are λ1 = 0.524422349, T1 = 0.36, λ2 = 0.190533895, and
T2 = 0.51.

Applying expression (3), we get Pr(X1 ≤ X2) = 0.684125.

This probability is consistent with the following figure, in which we superimposed the runtime
distributions of the two pure GRASP heuristics for the same instance.
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The plots in this figure show
that the pure GRASP with
α = 0.2 outperforms one with
α = 0.9, since the runtime
distribution of the former is to
the left of the runtime
distribution of the latter.
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Observations:

If the solution times do not fit exponential (or two-parameter shifted exponential) distributions, as
for the case of GRASP with path-relinking heuristics, the closed form result established in expression
(3) does not hold.

Algorithms in this situation cannot be compared by this approach.

The next topic extends this approach to general runtime distributions.
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Let X1 and X2 be two continuous random variables, with cumulative probability distributions FX1 (τ) and
FX2 (τ) and probability density functions fX1 (τ) and fX2 (τ), respectively. Then,

Pr(X1 ≤ X2) =

∫ ∞
−∞

Pr(X1 ≤ τ) · fX2 (τ) · dτ =

∫ ∞
0

Pr(X1 ≤ τ) · fX2 (τ) · dτ,

since fX1 (τ) = fX2 (τ) = 0 for any τ < 0. For an arbitrary small real number ε, the above expression can
be rewritten as

Pr(X1 ≤ X2) =
∞∑
i=0

∫ (i+1)·ε

i·ε
Pr(X1 ≤ τ) · fX2 (τ) · dτ. (5)

Since Pr(X1 ≤ i · ε) ≤ Pr(X1 ≤ τ) ≤ Pr(X1 ≤ (i + 1) · ε) for i · ε ≤ τ ≤ (i + 1) · ε, then replacing
Pr(X1 ≤ τ) by Pr(X1 ≤ i · ε) and by Pr(X1 ≤ (i + 1) · ε) in (5) leads to

∞∑
i=0

FX1 (i · ε)

∫ (i+1)·ε

i·ε
fX2 (τ) · dτ ≤ Pr(X1 ≤ X2) ≤

∞∑
i=0

FX1 ((i + 1) · ε)

∫ (i+1)·ε

i·ε
fX2 (τ) · dτ.
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Let L(ε) and R(ε) be the value of the left and right hand sides of the above expression, respectively, with
∆(ε) = R(ε)− L(ε) being the difference between the upper and lower bounds to Pr(X1 ≤ X2).

Then, we have that

∆(ε) =
∞∑
i=0

[FX1 ((i + 1) · ε)− FX1 (i · ε)]

∫ (i+1)·ε

i·ε
fX2 (τ) · dτ. (6)

Let δ = maxτ≥0{fX1 (τ)}. Since |FX1 ((i + 1) · ε)−FX1 (i · ε)| ≤ δ · ε for i ≥ 0, expression (6) turns out to be

∆(ε) ≤
∞∑
i=0

δ · ε
∫ (i+1)·ε

i·ε
fX2 (τ) · dτ = δ · ε

∫ ∞
0

fX2 (τ) · dτ = δ · ε.

Consequently,
∆(ε) ≤ δ · ε, (7)

i.e., the difference ∆(ε) between the upper and lower bounds to Pr(X1 ≤ X2) (or the absolute error in the
integration) is smaller than or equal to δε.

Therefore, this difference can be made as small as desired by choosing a sufficiently small value for ε.
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In order to numerically evaluate a good approximation to Pr(X1 ≤ X2), we select the appropriate value of
ε such that the resulting approximation error ∆(ε) is sufficiently small.

Next, we compute L(ε) and R(ε) to obtain the approximation

Pr(X1 ≤ X2) ≈ L(ε) + R(ε)

2
. (8)

In practice, the above probability distributions are unknown.

Instead of the distributions, the information available is limited to a sufficiently large number N1 (resp.
N2) of observations of the random variable X1 (resp. X2).

Since the value of δ = maxτ≥0{fX1 (τ)} is also unknown beforehand, the appropriate value of ε cannot be
estimated.

Then, we proceed iteratively as follows.
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Let t1(j) (resp. t2(j)) be the value of the j-th smallest observation of the random variable X1 (resp. X2),
for j = 1, . . . ,N1 (resp. N2).

We set the bounds a = min{t1(1), t2(1)} and b = max{t1(N1), t2(N2)} and choose an arbitrary number h
of integration intervals to compute an initial value ε = (b − a)/h for each integration interval.

For sufficiently small values of the integration interval ε, the probability density function fX1 (τ) in the
interval [i · ε, (i + 1) · ε] can be approximated by f̂X1 (τ) = (F̂X1 ((i + 1) · ε)− F̂X1 (i · ε))/ε, where

F̂X1 (i · ε) = |{t1(j), j = 1, . . . ,N1 : t1(j) ≤ i · ε}|. (9)

The same approximations hold for random variable X2.

Finally, the value of Pr(X1 ≤ X2) can be computed as in expression (8), using the estimates f̂X1 (τ) and
f̂X2 (τ) in the computation of L(ε) and R(ε).

If the approximation error ∆(ε) = R(ε)− L(ε) becomes sufficiently small, then the procedure stops.

Otherwise, the value of ε is halved and the above steps are repeated until convergence.
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We illustrate next an application of the procedure described in the previous topic for the comparison of
randomized algorithms (running on the same instance) on three problems:

server replication for reliable multicast,

routing and wavelength assignment, and

2-path network design.
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Multicast communication consists of simultaneously delivering the same information to many
receivers, from single or multiple sources.

Network services specially designed for multicast are needed.

The scheme used in current multicast services create a delivery tree, whose root represents the
sender, whose leaves represent the receivers, and whose internal nodes represent network routers or
relaying servers.

Transmission is performed by creating copies of the data at split points of the tree.

An important issue regarding multicast communication is how to provide reliable service, ensuring
the delivery of all packets from the sender to receivers.

A successful technique to provide reliable multicast service is the server replication approach, in which
data is replicated at some of the multicast-capable relaying hosts (also called replicated or repair
servers) and each of them is responsible for the retransmission of packets to receivers in its group.

The problem consists in selecting the best subset of the multicast-capable relaying hosts to act as
replicated servers in a multicast scenario.

It is a special case of the p-median problem.
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DM-GRASP is a hybrid version of GRASP which incorporates a data-mining process.

We compare two heuristics for the server replication problem:

I algorithm A1 is an implementation of the DM-D5 version of DM-GRASP, in which the mining algorithm
is periodically applied,

I while A2 is a pure GRASP heuristic.

We present results for two instances using the same network scenario, with m = 25 and m = 50
replication servers.

Each algorithm was run 200 times with different seeds.

The target was set at 2,818.925 (the best known solution value is 2,805.89) for the instance with
m = 25 and at 2,299.07 (the best known solution value is 2,279.84) for the instance with m = 50.
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The figure depicts the runtime distribution and quantile-quantile plot for algorithm DM-D5 on the
instance with m = 25 and the target value set at 2,818.925.
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The figure depicts the runtime distribution and quantile-quantile plot for algorithm DM-D5 on the
instance with m = 50 and the target value set at 2,299.07.
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Observations:

Running times of DM-D5 did not fit exponential distributions for any of the instances.

GRASP solution times were exponential for both.
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The figure shows the superimposed empirical runtime distributions of DM-D5 and GRASP.
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Observations:

Algorithm DM-D5 outperformed GRASP, since the runtime distribution of the DM-D5 is to the left
of the distribution for GRASP on the both instances, with m = 25 and m = 50.

Consistently, the computations show that:

I Pr(X1 ≤ X2) = 0.619763 (with L(ε) = 0.619450, R(ε) = 0.620075, ∆(ε) = 0.000620, and
ε = 0.009552) for the instance with m = 25.

I Pr(X1 ≤ X2) = 0.854113 (with L(ε) = 0.853800, R(ε) = 0.854425, ∆(ε) = 0.000625, and
ε = 0.427722) for the instance with m = 50.
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We also investigate the convergence of the proposed measure with the sample size (i.e., with the
number of independent runs of each algorithm).

Convergence with the sample size is illustrated next for the same m = 25 instance of the server
replication problem, with the same target 2,818.925 already used in the previous experiment.

Once again, algorithm A1 is the DM-D5 version of DM-GRASP and algorithm A2 is the pure GRASP
heuristic.

The estimation of Pr(X1 ≤ X2) is computed for N = 100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 2000, 3000, 4000, and 5000 independent runs of each algorithm.
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Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the m = 25 instance of the server
replication problem.

N L(ε) Pr(X1 ≤ X2) R(ε) ∆(ε) ε

100 0.655900 0.656200 0.656500 0.000600 0.032379
200 0.622950 0.623350 0.623750 0.000800 0.038558
300 0.613344 0.613783 0.614222 0.000878 0.038558
400 0.606919 0.607347 0.607775 0.000856 0.038558
500 0.602144 0.602548 0.602952 0.000808 0.038558
600 0.596964 0.597368 0.597772 0.000808 0.038558
700 0.591041 0.591440 0.591839 0.000798 0.038558
800 0.593197 0.593603 0.594009 0.000812 0.042070
900 0.593326 0.593719 0.594113 0.000788 0.042070

1000 0.594849 0.595242 0.595634 0.000785 0.042070
2000 0.588913 0.589317 0.589720 0.000807 0.047694
3000 0.583720 0.584158 0.584596 0.000875 0.047694
4000 0.582479 0.582912 0.583345 0.000866 0.047694
5000 0.584070 0.584511 0.584953 0.000882 0.050604
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Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the m = 25 instance of the server
replication problem.
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A point-to-point connection between two endnodes of an optical network is called a lightpath.

Two lightpaths may use the same wavelength, provided they do not share any common link.

The routing and wavelength assignment problem is that of routing a set of lightpaths and assigning
a wavelength to each of them, minimizing the number of wavelengths needed.

A decomposition strategy is compared with a multistart greedy heuristic.

Two networks are used for benchmarking:

I The first has 27 nodes representing the capitals of the 27 states of Brazil, with 70 links connecting
them. There are 702 lightpaths to be routed.

I Instance Finland is formed by 31 nodes and 51 links, with 930 lightpaths to be routed.

Each algorithm was run 200 times with different seeds.

The target was set at 24 (the best known solution value) for instance Brazil and at 50 for instance
Finland (the best known solution value is 47).

Algorithm A1 is the multistart heuristic, while A2 is the tabu search decomposition scheme.

The multistart solution times fit exponential distributions for both instances.
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The figure displays the runtime distribution and quantile-quantile plot for tabu search on Brazil instance
with the target value set at 24.
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The figure displays the runtime distribution and quantile-quantile plot for tabu search on Finland instance
with the target value set at 50.
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The figure shows the superimposed empirical runtime distributions of multistart and tabu search
algorithms.
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Observations:

The direct comparison of the two approaches shows that decomposition clearly outperformed the
multistart strategy for instance Brazil, since Pr(X1 ≤ X2) = 0.13 in this case (with L(ε) = 0.129650,
R(ε) = 0.130350, ∆(ε) = 0.000700, and ε = 0.008163).

However, the situation changes for instance Finland.

Although both algorithms have similar performances, multistart is slightly better with respect to the
measure proposed in this presentation, since Pr(X1 ≤ X2) = 0.536787 (with L(ε) = 0.536525,
R(ε) = 0.537050, ∆(ε) = 0.000525, and ε = 0.008804).
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As done for the server replication problem , we also investigate the convergence of the proposed
measure with the sample size (i.e., with the number of independent runs of each algorithm).

Convergence with the sample size is illustrated next for the Finland instance of the routing and
wavelength assignment problem, with the target set at 49.

Once again, algorithm A1 is the multistart heuristic and algorithm A2 is the tabu search
decomposition scheme.

The estimation of Pr(X1 ≤ X2) is computed for N = 100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 2000, 3000, 4000, and 5000 independent runs of each algorithm.
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Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the Finland instance of the
routing and wavelength assignment problem.

N L(ε) Pr(X1 ≤ X2) R(ε) ∆(ε) ε

100 0.000001 0.000200 0.000400 0.000400 1.964844
200 0.000100 0.004875 0.009650 0.009550 0.000480
300 0.006556 0.012961 0.019367 0.012811 0.000959
400 0.007363 0.013390 0.019425 0.012063 0.000959
500 0.007928 0.014694 0.021460 0.013532 0.000610
600 0.006622 0.013069 0.019517 0.012894 0.000610
700 0.005722 0.011261 0.016800 0.011078 0.000610
800 0.005033 0.011667 0.018302 0.013269 0.000610
900 0.004556 0.010461 0.016367 0.011811 0.000610

1000 0.004100 0.009425 0.014750 0.010650 0.000610
2000 0.006049 0.011580 0.017112 0.011063 0.000610
3000 0.007802 0.014395 0.020987 0.013185 0.000610
4000 0.007408 0.013698 0.019988 0.012580 0.000610
5000 0.006791 0.013090 0.019389 0.012598 0.000623
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Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the Finland instance of the
routing and wavelength assignment problem.
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Once again, the estimation of
Pr(X1 ≤ X2) stabilizes as the
sample size N increases.



GRASP algorithms for 2-path network design

Universidade Federal Fluminense Runtime distributions Metaheuristics – May 9, 2019 54 / 73

Given a connected undirected graph with non-negative weights associated with its edges, together
with a set of origin-destination nodes, the 2-path network design problem consists in finding a
minimum weighted subset of edges containing a path formed by at most two edges between every
origin-destination pair.

Applications can be found in the design of communication networks, in which paths with few edges
are sought to enforce high reliability and small delays.
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We first compare four GRASP heuristics for solving an instance of the 2-path network design
problem with 90 nodes.

I The first heuristic is a pure GRASP (algorithm A1).

I The others integrate different path-relinking strategies for search intensification at the end of each
GRASP iteration:

F forward path-relinking (algorithm A2),

F bidirectional path-relinking (algorithm A3), and

F backward path-relinking (algorithm A4).

Each algorithm was run 500 independent times on the benchmark instance with 90 nodes and 900
origin-destination pairs, with the solution target value set at 673 (the best known solution value is
639).

The runtime distributions and quantile-quantile plots for the different versions of GRASP with
path-relinking are shown in the following figures.
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The figure shows the runtime distribution and quantile-quantile plot for GRASP with forward
path-relinking on 90-node instance with the target value set at 673.
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The figure shows the runtime distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking on 90-node instance with the target value set at 673.
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The figure shows the runtime distribution and quantile-quantile plot for GRASP with backward
path-relinking on 90-node instance with the target value set at 673.
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The figure shows the superimposed empirical runtime distributions of pure GRASP and three versions of
GRASP with path-relinking.
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Observations:

Algorithm A2 (as well as A3 and A4) performs much better than A1, as indicated by
Pr(X2 ≤ X1) = 0.986604 (with L(ε) = 0.986212, R(ε) = 0.986996, ∆(ε) = 0.000784, and
ε = 0.029528).

Algorithm A3 outperforms A2, as illustrated by the fact that Pr(X3 ≤ X2) = 0.636000 (with
L(ε) = 0.630024, R(ε) = 0.641976, ∆(ε) = 0.011952, and ε = 1.354218× 10−6).

Finally, we observe that algorithms A3 and A4 behave very similarly, although A4 performs slightly
better for this instance, since Pr(X4 ≤ X3) = 0.536014 (with L(ε) = 0.528560, R(ε) = 0.543468,
∆(ε) = 0.014908, and ε = 1.001358× 10−6).
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As for the problems considered in previous topics, we also investigate the convergence of the
proposed measure as a function of sample size (i.e., with the number of independent runs of each
algorithm).

Convergence with the sample size is illustrated next for the 90-node instance of the 2-path network
design problem, with the same target 673 previously used.

We recall that algorithm A1 is the GRASP with backward path-relinking heuristic, while algorithm A2

is the GRASP with bidirectional path-relinking heuristic.

The estimation of Pr(X1 ≤ X2) is computed for N = 100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 2000, 3000, 4000, and 5000 independent runs of each algorithm.
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Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the 90-node instance of the
2-path network design problem.

N L(ε) Pr(X1 ≤ X2) R(ε) ∆(ε) ε

100 0.553300 0.559150 0.565000 0.011700 4.387188× 10−7

200 0.553250 0.553850 0.554450 0.001199 4.501629× 10−7

300 0.551578 0.557483 0.563389 0.011811 4.501629× 10−7

400 0.545244 0.551241 0.557238 0.011994 4.730511× 10−7

500 0.546604 0.552420 0.558236 0.011632 5.035686× 10−7

600 0.538867 0.544749 0.550631 0.011764 5.073833× 10−7

700 0.536320 0.542181 0.548041 0.011720 5.073833× 10−7

800 0.537533 0.543298 0.549064 0.011531 5.073833× 10−7

900 0.533912 0.539671 0.545430 0.011517 5.073833× 10−7

1000 0.531595 0.537388 0.543180 0.011585 5.073833× 10−7

2000 0.528224 0.533959 0.539698 0.011469 5.722427× 10−7

3000 0.530421 0.536128 0.541835 0.011414 6.027603× 10−7

4000 0.532695 0.538364 0.544033 0.011338 6.027603× 10−7

5000 0.530954 0.536566 0.542178 0.011225 6.027603× 10−7
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Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the 90-node instance of the
2-path network design problem.
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Once again, the estimation of
Pr(X1 ≤ X2) stabilizes as the
sample size N increases.
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We next compare five GRASP heuristics for the 2-path network design problem, with and without
path-relinking, for solving an instance with 80 nodes and 800 origin-destination pairs, with target
value set at 588 (the best known solution value is 577).

In this example, the first algorithm is a pure GRASP (algorithm A1).

The other heuristics integrate different path-relinking strategies at the end of each GRASP iteration:

I forward path-relinking (algorithm A2),

I bidirectional path-relinking (algorithm A3),

I backward path-relinking (algorithm A4), and

I mixed path-relinking (algorithm A5).

As before, each heuristic was run independently 500 times.
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The figure shows the superimposed empirical runtime distributions of pure GRASP and four GRASP with
path-relinking heuristics.
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Observations:

Algorithm A2 (as well as A3, A4, and A5) performs much better than A1, as indicated by
Pr(X2 ≤ X1) = 0.970652 (with L(ε) = 0.970288, R(ε) = 0.971016, ∆(ε) = 0.000728, and
ε = 0.014257).

Algorithm A3 outperforms A2, as shown by the fact that Pr(X3 ≤ X2) = 0.617278 (with
L(ε) = 0.610808, R(ε) = 0.623748, ∆(ε) = 0.012940, and ε = 1.220703× 10−6).

Algorithm A4 performs slightly better than A3 for this instance, since Pr(X4 ≤ X3) = 0.537578 (with
L(ε) = 0.529404, R(ε) = 0.545752, ∆(ε) = 0.016348, and ∆(ε) = 1.201630× 10−6).

Algorithms A5 and A4 also behave very similarly, but A5 is slightly better for this instance since
Pr(X5 ≤ X4) = 0.556352 (with L(ε) = 0.547912, R(ε) = 0.564792, ∆(ε) = 0.016880, and
ε = 1.001358× 10−6).
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We conclude this presentation by describing the use of the runtime distribution methodology to
evaluate and compare parallel implementations of stochastic local search algorithms.

Once again, the 2-path network design problem is used to illustrate this application.

The next two figures superimpose the runtime distributions of, respectively, cooperative and
independent parallel implementations of GRASP with bidirectional path-relinking for the same
problem on 2, 4, 8, 16, and 32 processors, on an instance with 100 nodes and 1000 origin-destination
pairs, using 683 as target value.

Each algorithm was run independently 200 times.

We denote by Ak
1 (resp. Ak

2) the cooperative (resp. independent) parallel implementation running on
k processors, for k = 2, 4, 8, 16, 32.
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The figure shows the superimposed empirical runtime distributions of cooperative parallel GRASP with
bidirectional path-relinking running on 2, 4, 8, 16, and 32 processors.
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The figure shows the superimposed empirical runtime distributions of independent parallel GRASP with
bidirectional path-relinking running on 2, 4, 8, 16, and 32 processors.
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Comparing cooperative (algorithm A1) and independent (algorithm A2) parallel implementations.

Processors (k) Pr(X k
1 ≤ X k

2 )

2 0.309784
4 0.597253
8 0.766806

16 0.860864
32 0.944938

Observations:

The table shows the probability that the
cooperative parallel implementation performs
better than the independent implementation on
2, 4, 8, 16, and 32 processors.

The independent implementation performs better than the cooperative implementation on two
processors.

In that case, the cooperative implementation does not benefit from the availability of two processors,
since only one of them performs iterations, while the other acts as the master.

However, as the number of processors increases from two to 32, the cooperative implementation
performs progressively better than the independent implementation, since more processors are
devoted to perform GRASP iterations.
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The proposed methodology is clearly consistent with the relative behavior of the two parallel versions
for any number of processors.

Furthermore, it illustrates that the cooperative implementation becomes progressively better than
the independent implementation when the number of processors increases.
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Comparing the parallel implementations on 2j+1 (algorithm A1) and 2j (algorithm A2) processors, for
j = 1, 2, 3, 4.

Processors (a) Processors (b) Pr(X a
1 ≤ X b

1 ) Pr(X a
2 ≤ X b

2 )

4 2 0.766235 0.651790
8 4 0.753904 0.685108

16 8 0.724398 0.715556
32 16 0.747531 0.669660

Observations:

Both implementations scale appropriately as the number of processors grows.

Once again, we can see that the performance measure appropriately describes the relative behavior
of the two parallel strategies and provides insight on how parallel algorithms scale with the number
of processors.

The table shows numerical evidence to evaluate the trade-offs between computation times and the
number of processors in parallel implementations.
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The material in this talk is taken from

Chapter 6 – Runtime distributions

of our book, Optimization by GRASP: Greedy Ran-
domized Adaptive Search Procedures (Resende &
Ribeiro, Springer. 2016).


