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Solution construction

◮ Greedy algorithms
◮ Adaptive greedy algorithms
◮ Semi-greedy algorithms
◮ Random multistart
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GRASP was introduced in by Feo &
Resende in 1989.

Book by Resende & Ribeiro appeared
in 2016.

Number of papers on GRASP
continues to grow. In 2016, almost
600 papers were published.
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The pseudo-code shows a greedy
algorithm for a minimization problem.

Feasible solution S is constructed, one
ground set element at a time.

F is set of feasible ground set elements.

Greedy algorithm selects feasible ground
set element of smallest cost.

The costs can be sorted in a
preprocessing step.

Example: Greedy algorithm for minimum
weight spanning tree (Kruskal, 1957).

begin GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 while F 6= ∅ do

5 i∗ ← argmin{ci : i ∈ F};
6 S ← S ∪ {i∗};
7 f (S)← f (S) + ci∗ ;
8 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
9 end-while;
10 return S , f (S);
end GREEDY.
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The greedy algorithm in the previous slide selects a minimum cost element i∗ of the set of feasible
candidate elements to incorporate in the solution.

In that algorithm, only this constant cost is used to guide the algorithm, and therefore the elements
can be sorted in the increasing order of their costs in a preprocessing step.
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The greedy algorithm in the previous slide selects a minimum cost element i∗ of the set of feasible
candidate elements to incorporate in the solution.

In that algorithm, only this constant cost is used to guide the algorithm, and therefore the elements
can be sorted in the increasing order of their costs in a preprocessing step.

Although that greedy algorithm is applicable in many situations, such as to the minimum spanning
tree problem, there are other situations where a different measure of the contribution of an element
guides the algorithm and it is affected by the previous choices of elements made by the algorithm.

We call these adaptive greedy algorithms.
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The pseudo-code shows a generic
adaptive greedy algorithm for a
minimization problem.

Feasible solution S is constructed, one
ground set element at a time.

F is set of feasible ground set elements.

begin ADAPTIVE-GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 Compute the greedy choice function g(i) for all i ∈ F ;
5 while F 6= ∅ do

6 i∗ ← argmin{g(i) : i ∈ F};
7 S ← S ∪ {i∗};
8 f (S)← f (S) + ci∗ ;
9 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
10 Update the greedy choice function g(i) for all i ∈ F ;
11 end-while;
12 return S , f (S);
end ADAPTIVE-GREEDY.
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The pseudo-code shows a generic
adaptive greedy algorithm for a
minimization problem.

Feasible solution S is constructed, one
ground set element at a time.

F is set of feasible ground set elements.

Greedy choice function g(i) is the
“contribution” of ground set element
i ∈ F .

Adaptive greedy algorithm selects feasible
ground set element of smallest greedy
choice function.

begin ADAPTIVE-GREEDY;
1 S ← ∅;
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3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 Compute the greedy choice function g(i) for all i ∈ F ;
5 while F 6= ∅ do
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8 f (S)← f (S) + ci∗ ;
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The pseudo-code shows a generic
adaptive greedy algorithm for a
minimization problem.

Feasible solution S is constructed, one
ground set element at a time.

F is set of feasible ground set elements.

Greedy choice function g(i) is the
“contribution” of ground set element
i ∈ F .

Adaptive greedy algorithm selects feasible
ground set element of smallest greedy
choice function.

Example: Adaptive greedy nearest
neighbor heuristic for TSP.

begin ADAPTIVE-GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 Compute the greedy choice function g(i) for all i ∈ F ;
5 while F 6= ∅ do

6 i∗ ← argmin{g(i) : i ∈ F};
7 S ← S ∪ {i∗};
8 f (S)← f (S) + ci∗ ;
9 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
10 Update the greedy choice function g(i) for all i ∈ F ;
11 end-while;
12 return S , f (S);
end ADAPTIVE-GREEDY.
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Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.
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Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

The algorithm starts from any node and repeatedly
moves from the current node to its nearest
unvisited node.
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Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

The algorithm starts from any node and repeatedly
moves from the current node to its nearest
unvisited node.

Suppose the algorithm were to start from node 1,
in which case it should move next to either node 2
or 3.
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Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

The algorithm starts from any node and repeatedly
moves from the current node to its nearest
unvisited node.

Suppose the algorithm were to start from node 1,
in which case it should move next to either node 2
or 3.

If it moves to node 2, then it must necessarily
move next to node 3 and then to node 4. Since
there is no edge connecting node 4 to node 1, the
algorithm will fail to find a tour.

By symmetry reasoning, we show this adaptive
greedy algorithm fails to find a tour, no matter
which node it starts from.
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Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.
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Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

Starting from node 1, it then moves to either node
2 or node 3 with equal probability.
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Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

Starting from node 1, it then moves to either node
2 or node 3 with equal probability.

Suppose it were to move to node 2. Now, again
with equal probability, it moves to either node 3 or
node 4.
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Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

Starting from node 1, it then moves to either node
2 or node 3 with equal probability.

Suppose it were to move to node 2. Now, again
with equal probability, it moves to either node 3 or
node 4.

◮ On the one hand, if it were to move to node 3, it
would fail to find a tour.
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Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

Starting from node 1, it then moves to either node
2 or node 3 with equal probability.

Suppose it were to move to node 2. Now, again
with equal probability, it moves to either node 3 or
node 4.

◮ On the one hand, if it were to move to node 3, it
would fail to find a tour.

◮ On the other hand, by moving to node 4, it
would then go to node 3, and then back to node
1, thus finding a tour of length 40.
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Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

Starting from node 1, it then moves to either node
2 or node 3 with equal probability.

Suppose it were to move to node 2. Now, again
with equal probability, it moves to either node 3 or
node 4.

◮ On the one hand, if it were to move to node 3, it
would fail to find a tour.

◮ On the other hand, by moving to node 4, it
would then go to node 3, and then back to node
1, thus finding a tour of length 40.

Therefore, there is a 50% probability that the
algorithm will find a tour if it starts from node 1.
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After ten attempts, the probability of finding the
optimal solution is over 99.9%.

Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

Starting from node 1, it then moves to either node
2 or node 3 with equal probability.

Suppose it were to move to node 2. Now, again
with equal probability, it moves to either node 3 or
node 4.

◮ On the one hand, if it were to move to node 3, it
would fail to find a tour.

◮ On the other hand, by moving to node 4, it
would then go to node 3, and then back to node
1, thus finding a tour of length 40.

Therefore, there is a 50% probability that the
algorithm will find a tour if it starts from node 1.

With repeated applications, the probability of
finding the optimal cycle quickly approaches one.
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Algorithms like the one in the previous slide, which add randomization to a greedy or adaptive greedy
algorithm, are called semi-greedy or randomized-greedy algorithms.

The pseudo-code on the right shows a
semi-greedy algorithm for a minimization
problem.

begin SEMI-GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 while F 6= ∅ do

5 Let RCL be a subset of low-cost elements of F ;
6 Let i∗ be a randomly chosen element from RCL;
7 S ← S ∪ {i∗};
8 f (S)← f (S) + ci∗ ;
9 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
10 end-while;
11 return S , f (S);
end SEMI-GREEDY.
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Algorithms like the one in the previous slide, which add randomization to a greedy or adaptive greedy
algorithm, are called semi-greedy or randomized-greedy algorithms.

The pseudo-code on the right shows a
semi-greedy algorithm for a minimization
problem.

It is similar to a greedy algorithm, differing
only in how the ground set element is
chosen from the set F of feasible candidate
ground set elements (lines 5 and 6).

In line 5, a subset of low-cost elements of
set F is placed in a restricted candidate list
(RCL).

In line 6, a ground set element is selected
at random from the RCL to be
incorporated into the solution in line 7.

begin SEMI-GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 while F 6= ∅ do

5 Let RCL be a subset of low-cost elements of F ;
6 Let i∗ be a randomly chosen element from RCL;
7 S ← S ∪ {i∗};
8 f (S)← f (S) + ci∗ ;
9 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
10 end-while;
11 return S , f (S);
end SEMI-GREEDY.
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Two simple schemes to define a restricted candidate list are:
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Two simple schemes to define a restricted candidate list are:

Cardinality-based RCL: The k least-costly feasible candidate ground set elements of set F are placed
in the RCL.



Semi-greedy algorithms: Building the RCL

GRASP Metaheuristics – 2017-11-15 10 / 29

Two simple schemes to define a restricted candidate list are:

Cardinality-based RCL: The k least-costly feasible candidate ground set elements of set F are placed
in the RCL.

Quality-based RCL: RCL is formed by all ground-set elements i ∈ F satisfying

cmin ≤ ci ≤ cmin + α(cmax − cmin),

where
cmin = min{ci : i ∈ F}, cmax = max{ci : i ∈ F}, and 0 ≤ α ≤ 1.
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Two simple schemes to define a restricted candidate list are:

Cardinality-based RCL: The k least-costly feasible candidate ground set elements of set F are placed
in the RCL.

Quality-based RCL: RCL is formed by all ground-set elements i ∈ F satisfying

cmin ≤ ci ≤ cmin + α(cmax − cmin),

where
cmin = min{ci : i ∈ F}, cmax = max{ci : i ∈ F}, and 0 ≤ α ≤ 1.

Note that setting

◮ α = 0 corresponds to a pure greedy algorithm, since a lowest cost element will always be selected.
◮ α = 1 leads to a random algorithm, since any new element may be added with equal probability.
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A multistart procedure is an algorithm which repeatedly applies a solution construction procedure and
outputs the best solution found over all trials. Each trial, or iteration, of a multistart procedure is applied
under different conditions.
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A multistart procedure is an algorithm which repeatedly applies a solution construction procedure and
outputs the best solution found over all trials. Each trial, or iteration, of a multistart procedure is applied
under different conditions.

The pseudo-code on the right is of a random
multistart procedure for a minimization problem.

begin RANDOM-MULTISTART;
1 f ∗ ←∞;
2 while stopping criterion not satisfied do

3 S ← RandomSolution;
4 if f (S) < f ∗ then

5 S∗ ← S ;
6 f ∗ ← f (S);
7 end-if;
8 end-while;
9 return S∗;
end RANDOM-MULTISTART.
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A multistart procedure is an algorithm which repeatedly applies a solution construction procedure and
outputs the best solution found over all trials. Each trial, or iteration, of a multistart procedure is applied
under different conditions.

The pseudo-code on the right is of a random
multistart procedure for a minimization problem.

Like the GREEDY algorithm, a new random
solution is generated in line 3 by adding to the
partial solution (initially empty) a new feasible
ground set element, one element at a time.

Unlike GREEDY, each ground set element is
chosen at random from the set of candidate
ground set elements.

begin RANDOM-MULTISTART;
1 f ∗ ←∞;
2 while stopping criterion not satisfied do

3 S ← RandomSolution;
4 if f (S) < f ∗ then

5 S∗ ← S ;
6 f ∗ ← f (S);
7 end-if;
8 end-while;
9 return S∗;
end RANDOM-MULTISTART.
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The semi-greedy algorithm can be embedded in a multistart framework.
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The semi-greedy algorithm can be embedded in a multistart framework.

The pseudo-code on the right is of a semi-greedy
multistart procedure for a minimization problem.

begin SEMI-GREEDY-MULTISTART;
1 f ∗ ←∞;
2 while stopping criterion not satisfied do

3 S ← SEMI-GREEDY;
4 if f (S) < f ∗ then

5 S∗ ← S ;
6 f ∗ ← f (S);
7 end-if;
8 end-while;
9 return S∗;
end SEMI-GREEDY-MULTISTART.
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The semi-greedy algorithm can be embedded in a multistart framework.

The pseudo-code on the right is of a semi-greedy
multistart procedure for a minimization problem.

This algorithm is almost identical to the random
multistart method, except that solutions are
generated with a semi-greedy procedure instead
of at random.

Note that each invocation of the semi-greedy
procedure in line 3 is independent of the others,
therefore producing independent solutions.

begin SEMI-GREEDY-MULTISTART;
1 f ∗ ←∞;
2 while stopping criterion not satisfied do

3 S ← SEMI-GREEDY;
4 if f (S) < f ∗ then

5 S∗ ← S ;
6 f ∗ ← f (S);
7 end-if;
8 end-while;
9 return S∗;
end SEMI-GREEDY-MULTISTART.
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Recall that parameter α in a semi-greedy construction
procedure controls the mix of greediness and randomness
in the constructed solution.
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Recall that parameter α in a semi-greedy construction
procedure controls the mix of greediness and randomness
in the constructed solution.

In the case of a maximization problem:

◮ α = 1 leads to a greedy construction.
◮ α = 0 leads to a random construction.
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Recall that parameter α in a semi-greedy construction
procedure controls the mix of greediness and randomness
in the constructed solution.

In the case of a maximization problem:

◮ α = 1 leads to a greedy construction.
◮ α = 0 leads to a random construction.

The figure shows the distribution of solution values
on an instance of the maximum covering problem
produced by
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Recall that parameter α in a semi-greedy construction
procedure controls the mix of greediness and randomness
in the constructed solution.

In the case of a maximization problem:

◮ α = 1 leads to a greedy construction.
◮ α = 0 leads to a random construction.

The figure shows the distribution of solution values
on an instance of the maximum covering problem
produced by

◮ a random multistart procedure,
◮ a semi-greedy multistart algorithm with the RCL

parameter α = 0.85,
◮ a greedy algorithm,
◮ along with the best known solution value.



Semi-greedy multistart

GRASP Metaheuristics – 2017-11-15 14 / 29

1

10

100

1000

5000

2 3 4 5 6 7 8 9 10 11

O
cc

ur
re

nc
es

 o
ve

r 
50

00
 tr

ia
ls

Solution value

be
st

 k
no

w
n 

so
lu

tio
n 

va
lu

e

greedy

semi-greedy

random

The figure compares the two distributions with the greedy
solution value and the best-known solution value for
this maximization problem. It illustrates four important
points:
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The figure compares the two distributions with the greedy
solution value and the best-known solution value for
this maximization problem. It illustrates four important
points:

1 Semi-greedy solutions are on average much better
than random solutions.

2 There is more variance in the solution values
produced by a random multistart method than by
a semi-greedy multistart algorithm.

3 The greedy solution is on average better than both
the random and the semi-greedy solutions but,
even if ties are broken at random, it has less
variance than the random or semi-greedy solutions.

4 Random, semi-greedy, and greedy solutions are
usually sub-optimal.
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Distribution of semi-greedy solution values as a
function of the quality-based RCL parameter α
(1000 repetitions were recorded for each value
of α) on an instance of the maximum weighted
satisfiability problem.

As α increases from 0 (random
construction) to 1 (greedy construction):
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Distribution of semi-greedy solution values as a
function of the quality-based RCL parameter α
(1000 repetitions were recorded for each value
of α) on an instance of the maximum weighted
satisfiability problem.

As α increases from 0 (random
construction) to 1 (greedy construction):

◮ Average solution value increases.
◮ Spread of solution values decreases.
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A greedy randomized adaptive search
procedure (GRASP) is the hybridization of
a semi-greedy algorithm with a local search
method – embedded in a multistart
framework.

begin GRASP;
1 f ∗ ←∞;
2 while stopping criterion not satisfied do

3 S ← SEMI-GREEDY;
4 if S is not feasible then

5 S ← REPAIR(S);
6 end-if;
7 S ← LOCAL-SEARCH(S);
8 if f (S) < f ∗ then

9 S∗ ← S ;
10 f ∗ ← f (S);
11 end-if;
12 end-while;
13 return S∗;
end GRASP.
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A greedy randomized adaptive search
procedure (GRASP) is the hybridization of
a semi-greedy algorithm with a local search
method – embedded in a multistart
framework.

The method consists of multiple
applications of local search, each starting
from a solution generated with a
semi-greedy construction procedure.

If the constructed solution is infeasible, a
repair procedure may be needed to make it
feasible.

A best local optimum, over all GRASP
iterations, is returned as the solution
provided by the algorithm.
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3 S ← SEMI-GREEDY;
4 if S is not feasible then

5 S ← REPAIR(S);
6 end-if;
7 S ← LOCAL-SEARCH(S);
8 if f (S) < f ∗ then

9 S∗ ← S ;
10 f ∗ ← f (S);
11 end-if;
12 end-while;
13 return S∗;
end GRASP.
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Distribution of the solution values obtained af-
ter local search as a function of the quality-
based parameter α of the semi-greedy construc-
tion procedure (1000 repetitions for each value
of α) on an instance of max-SAT.

The distributions show:
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Distribution of the solution values obtained af-
ter local search as a function of the quality-
based parameter α of the semi-greedy construc-
tion procedure (1000 repetitions for each value
of α) on an instance of max-SAT.

The distributions show:

◮ The variance of the GRASP solution
values decreases as α increases.

◮ GRASP solutions improve on average
as we move from a totally random
construction to a greedy construction.

◮ GRASP and semi-greedy multistart
differ in one important way. The best
solution found, over all 1000 runs,
improves as we move from random to
semi-greedy construction (until some
value of parameter α), and then
deteriorates as α approaches 1.
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The plot shows best and average solution values
for GRASP as a function of the RCL parameter α
for 1000 GRASP iterations on an instance of the
maximum weighted satisfiability problem.
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Average semi-greedy solution improves as
we move from a more random construction
to a more greedy construction.
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Best solution increases, reaches a
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The plot shows best and average solution values
for GRASP as a function of the RCL parameter α
for 1000 GRASP iterations on an instance of the
maximum weighted satisfiability problem.

Average semi-greedy solution improves as
we move from a more random construction
to a more greedy construction.

Best solution increases, reaches a
maximum, and then deteriorates.

Greediness is nice, but we need some
diversity.
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ter α on 1000 GRASP iterations on an instance
of the maximum weighted satisfiability problem.
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local search running time, average Hamming

distance between constructed solution and lo-

cal maximum, and average number of local

search moves as a function of the RCL parame-
ter α on 1000 GRASP iterations on an instance
of the maximum weighted satisfiability problem.

Since local search traverses a 1-flip
neighborhood, the curve for the number of
moves made by local search coincides with
the curve for the Hamming distance
between the starting solution and the local
maximum.
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Plot shows total GRASP running time, total

local search running time, average Hamming

distance between constructed solution and lo-

cal maximum, and average number of local

search moves as a function of the RCL parame-
ter α on 1000 GRASP iterations on an instance
of the maximum weighted satisfiability problem.

Since local search traverses a 1-flip
neighborhood, the curve for the number of
moves made by local search coincides with
the curve for the Hamming distance
between the starting solution and the local
maximum.

Strong correlation between Hamming
distance, number of moves taken by local
search, and local search running time.
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The figure displays, for the same instance
of the maximum covering problem considered
earlier, the best objective function solution
value as a function of running time for GRASP
(with α = 0.85), random multistart (GRASP
with α = 0) with local search, and greedy mul-
tistart (GRASP with α = 1) with local search.
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Greedy multistart with local search fails
to find the best known solution of value
9.92926.
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to find the best known solution of value
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GRASP finds it after only 126 seconds.
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The figure displays, for the same instance
of the maximum covering problem considered
earlier, the best objective function solution
value as a function of running time for GRASP
(with α = 0.85), random multistart (GRASP
with α = 0) with local search, and greedy mul-
tistart (GRASP with α = 1) with local search.

Greedy multistart with local search fails
to find the best known solution of value
9.92926.

GRASP finds it after only 126 seconds.

Random multistart with local search
takes 152,664 seconds to reach that
solution, i.e. over one thousand times
longer than GRASP.
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Given

Graph G = (V ,U), where V is the
set of vertices and U is the set of
edges;

Weights wuv associated with each
edge (u, v) ∈ U.

The maximum cut (MAX-CUT) problem

consists in finding a nonempty proper sub-
set of vertices S ⊂ V (S 6= ∅), such that
the weight of the cut (S , S̄), given by

w(S , S̄) =
∑

u∈S,v∈S̄

wuv ,

is maximized.

MAX-CUT is NP-hard (Karp, 1972).

Maximum cut problem on a graph with |V | = 5 and
|U| = 7. Four cuts are shown. The maximum cut is
(S , S̄) = ({1, 2, 4}, {3, 5}) and has a weight w(S , S̄) =
50.
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Pseudo-code of a GRASP for the MAX-CUT
problem is shown on the right.

GRASP iterations continue until a stopping cri-
terion is satisfied. Each iteration of GRASP
consists in:

Construction of a semi-greedy solution
(S , S̄) in line 3.

Local search for a local maximum (S , S̄)
in line 4.

Update of the best solution (S∗, S̄∗) in
lines 7 and 8 if current local maximum is
best so far.

begin GRASP-MAXCUT;
1 w∗ ← −∞;
2 while stopping criterion is not satisfied do

3 (S , S̄)← SEMI-GREEDY-MAXCUT;
4 (S , S̄)← LOCAL-SEARCH-MAXCUT((S , S̄));
5 w(S , S̄) =

∑

i∈S,j∈S̄ wij ;

6 if w(S , S̄) > w∗ then

7 (S∗, S̄∗)← (S , S̄);
8 w∗ ← w(S , S̄);
9 end-if;
10 end-while;
11 return (S∗, S̄∗),w∗;
end GRASP-MAXCUT.
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Cut (S , S̄) = ({1, 5}, {2, 3, 4}) with weight 27.

We wish to build a proper subset S ⊂ V , such that (S , S̄)
forms a partition of V , i.e., S ∪ S̄ = V and S ∩ S̄ = ∅.

The ground set for the MAX-CUT problem is the set V
of vertices of graph G = (V ,U).

The greedy algorithm builds a solution
incrementally in sets X and Y by assigning
vertices from the ground set V to either X or Y .

Initially, sets X and Y each contain an endpoint of
a largest-weight edge.

At each other step of the construction, a new
ground set element v ∈ V is added to either set X
or set Y of the partial solution.

This is repeated until X ∪ Y = V , at which point
we set S to X , S̄ to Y , and a feasible solution
(S , S̄) is on hand.
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While |X |+ |Y | < |V |:

◮ Let (X ,Y ) be the partial solution under construction. For each yet-unassigned vertex v ∈ V \ (X ∪ Y ),
define

σX (v) =
∑

u∈Y

wvu

and
σY (v) =

∑

u∈X

wvu

to be, respectively, the incremental contributions to the cut weight resulting from the assignment of
node v to sets X and Y of the partial partition (X ,Y ).

◮ The greedy function
g(v) = max{σX (v), σY (v)},

for v ∈ V \ (X ∪ Y ), measures how much additional weight results from the assignment of vertex v to
X or Y . The greedy choice is

v∗ = argmax{g(v) : v ∈ V \ (X ∪ Y )}.

Vertex v∗ is assigned to set X if σX (v) > σY (v) or to set Y , otherwise.
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Since a solution (S , S̄) generated with a
semi-greedy algorithm is not guaranteed to be
locally optimum with respect to any
neighborhood structure, a local search algorithm
may improve its weight.

To each vertex v ∈ V , we associate either

◮ Neighbor (S \ {v}, S̄ ∪ {v}) if v ∈ S
◮ Neighbor (S ∪ {v}, S̄ \ {v}) if v ∈ S̄

In other words, we move vertex v from one side
of the cut to the other.

begin LOCAL-SEARCH-MAXCUT((S , S̄));
1 change ← .TRUE.;
2 while change do

3 change ← .FALSE.;
4 for v = 1, . . . , |V | while .NOT.change do

5 if v ∈ S and σS̄ (v)− σS (v) > 0 then

6 S ← S \ {v};
7 S̄ ← S̄ ∪ {v};
8 change ← .TRUE.;
9 else

10 if v ∈ S̄ and σS (v)− σS̄ (v) > 0 then

11 S̄ ← S̄ \ {v};
12 S ← S ∪ {v};
13 change ← .TRUE.;
13 end-if;
14 end-if;
15 end-for;
16 end-while;
17 return (S , S̄), w(S , S̄);
end LOCAL-SEARCH-MAXCUT.
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Let
σS(v) =

∑

u∈S̄

wvu

be the sum of the weights of the edges incident to
v that have their other endpoint in S̄ and

σS̄(v) =
∑

u∈S

wvu.

be the sum of the weights of the edges incident to
v that have their other endpoint in S . The value

δ(v) =

{

σS̄(v)− σS(v), if v ∈ S ,

σS(v)− σS̄(v), if v ∈ S̄ ,

represents the change in the objective function

If change is positive, i.e. if δ(v) > 0, then make
move.

begin LOCAL-SEARCH-MAXCUT((S , S̄));
1 change ← .TRUE.;
2 while change do

3 change ← .FALSE.;
4 for v = 1, . . . , |V | while .NOT.change do

5 if v ∈ S and σS̄ (v)− σS (v) > 0 then

6 S ← S \ {v};
7 S̄ ← S̄ ∪ {v};
8 change ← .TRUE.;
9 else

10 if v ∈ S̄ and σS (v)− σS̄ (v) > 0 then

11 S̄ ← S̄ \ {v};
12 S ← S ∪ {v};
13 change ← .TRUE.;
13 end-if;
14 end-if;
15 end-for;
16 end-while;
17 return (S , S̄), w(S , S̄);
end LOCAL-SEARCH-MAXCUT.
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Over the years, many people have contributed to the advancement of GRASP. Here is a sample:
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Over the years, many people have contributed to the advancement of GRASP. Here is a sample:

Algorithmic developments

GRASP with path-relinking –
memory, intensification, improve search

extended construction mechanisms

Runtime distribution of GRASP –
parallel GRASP, restart strategies

Solution value distribution of GRASP –
stopping GRASP

Multi-objective GRASP

Continuous GRASP

Applied GRASP

Graph planarization

Jet ink printer nozzle design at HP

Locating modem pools at AT&T

Identifying communities of interest in massive
telephone call graphs

Handover minimization in celular networks at
AT&T

Jet engine blade balancing

In-bound baggage handling at airports

Private virtual circuit routing

Scheduling football tournaments



Concluding remarks

GRASP Metaheuristics – 2017-11-15 29 / 29

The material in this talk is taken from

Chapter 3 – Solution construction and greedy
algorithms

Chapter 5 – GRASP: The basic heuristic

Chapter 12 – Case studies

of our book Optimization by GRASP: Greedy Ran-

domized Adaptive Search Procedures (Resende &
Ribeiro, Springer, 2016).


