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Local search methods start from any feasible solution and visit other solutions, until a feasible solution
that cannot be further improved is found.

Local improvements are evaluated with respect to neighboring solutions that can be obtained by slight
modifications applied to a solution being visited.
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A solution S of a combinatorial optimization problem is defined by a subset of the elements of the ground
set E , i.e. S ⊆ E .
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A solution S of a combinatorial optimization problem is defined by a subset of the elements of the ground
set E , i.e. S ⊆ E .

A feasible solution is one that satisfies all constraints of the problem.

The objective function value of any (feasible or infeasible) solution S is given by

f (S) =
∑

i∈S

ci ,

where ci denotes the contribution to the objective function value of the ground set element i ∈ E .
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Let G = (V ,U) be a graph, where the node set is V = {1, . . . , n} and the edge set is U.

We are also given a subset T ⊆ V of terminal nodes that have to be connected.
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Let G = (V ,U) be a graph, where the node set is V = {1, . . . , n} and the edge set is U.

We are also given a subset T ⊆ V of terminal nodes that have to be connected.

A Steiner tree S = (V ′,U ′) of G is a subtree of G that connects all nodes in T . Note that T ⊆ V ′ ⊆ V .

Given any subset V ′ of nodes such that T ⊆ V ′ ⊆ V , note that any spanning tree of the graph
induced in G by V ′ is also a Steiner tree of G connecting all terminal nodes in T .

Therefore, any Steiner tree of G connecting the terminal nodes can be constructed by

◮ selecting a subset of optional nodes W ⊆ V \ T
◮ computing a minimum spanning tree of the graph G(W ∪ T ) induced in G by V ′ = W ∪ T .
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Let G = (V ,U) be a graph, where the node set is V = {1, . . . , n} and the edge set is U.

We are also given a subset T ⊆ V of terminal nodes that have to be connected.

A Steiner tree S = (V ′,U ′) of G is a subtree of G that connects all nodes in T . Note that T ⊆ V ′ ⊆ V .

Given any subset V ′ of nodes such that T ⊆ V ′ ⊆ V , note that any spanning tree of the graph
induced in G by V ′ is also a Steiner tree of G connecting all terminal nodes in T .

Therefore, any Steiner tree of G connecting the terminal nodes can be constructed by

◮ selecting a subset of optional nodes W ⊆ V \ T
◮ computing a minimum spanning tree of the graph G(W ∪ T ) induced in G by V ′ = W ∪ T .

As a consequence, every solution S of the Steiner tree problem can be represented by a binary vector
(x1, . . . , xn), in which xi = 1 if node i ∈ V ′ = W ∪ T ; xj = 0 otherwise, for every i = 1, . . . , n.
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W = {6, 7, 10, 13, 14} with weight 72.

Minimum weight spanning tree induced by W is red.
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W = {6, 7, 10, 13, 14} with weight 72.

W = {6, 7, 13, 14} with weight 64.

Minimum weight spanning tree induced by W is red.
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W = {6, 7, 10, 13, 14} with weight 72.

W = {6, 7, 13, 14} with weight 64. W = {9, 11, 12, 13} with weight 62.

Minimum weight spanning tree induced by W is red.
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Let V = {1, . . . , n} be the set of cities a traveling salesman has to visit, with non-negative lengths dij
associated with each pair of cities i , j ∈ V .

Any tour visiting each of the n cities exactly once corresponds to a feasible solution.
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Let V = {1, . . . , n} be the set of cities a traveling salesman has to visit, with non-negative lengths dij
associated with each pair of cities i , j ∈ V .

Any tour visiting each of the n cities exactly once corresponds to a feasible solution.

Every feasible solution S can be represented by a binary vector (x1, . . . , xm), where m = n(n − 1)/2
and xk = 1 if the edge indexed by k belongs to the corresponding tour, xk = 0 otherwise, for every
k = 1, . . . ,m. However, this representation applies to any edge subset, regardless if it corresponds to
a tour or not.

Therefore, the edge subset {k = 1, . . . ,m : xk = 1} must define a tour for this solution to be feasible.
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The figure illustrates a complete graph with four nodes.

Numbers on the six edges represent their indices.

Every solution can be represented by a binary vector

(x1, x2, x3, x4, x5, x6).
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The figure illustrates a complete graph with four nodes.

Numbers on the six edges represent their indices.

Every solution can be represented by a binary vector

(x1, x2, x3, x4, x5, x6).

There are three different tours, corresponding to the incidence vectors:
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(1, 1, 1, 1, 0, 0) (1, 0, 1, 0, 1, 1) (0, 1, 0, 1, 1, 1)

The figure illustrates a complete graph with four nodes.

Numbers on the six edges represent their indices.

Every solution can be represented by a binary vector

(x1, x2, x3, x4, x5, x6).

There are three different tours, corresponding to the incidence vectors:
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Any solution to the traveling salesman problem can alternatively be represented by a circular
permutation (π1, . . . , πn) of the n cities, with πi ∈ V for every i = 1, . . . , n and πi 6= πj for every
i , j = 1, . . . , n : i 6= j .

This permutation is associated with the tour defined by the edges (π1, π2), (π2, π3), . . . , (πn−1, πn),
and (πn, π1).
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Any solution to the traveling salesman problem can alternatively be represented by a circular
permutation (π1, . . . , πn) of the n cities, with πi ∈ V for every i = 1, . . . , n and πi 6= πj for every
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(a, b, c, d) (a, c, d , b) (a, c, b, d)

Any solution to the traveling salesman problem can alternatively be represented by a circular
permutation (π1, . . . , πn) of the n cities, with πi ∈ V for every i = 1, . . . , n and πi 6= πj for every
i , j = 1, . . . , n : i 6= j .

This permutation is associated with the tour defined by the edges (π1, π2), (π2, π3), . . . , (πn−1, πn),
and (πn, π1).

The three tours represented by the incidence vectors (1, 1, 1, 1, 0, 0), (1, 0, 1, 0, 1, 1), and (0, 1, 0, 1, 1, 1)
correspond, respectively, to the circular permutations
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The choice of one representation over another can lead to simpler implementations or faster algorithms.

It can also be helpful to work simultaneously with two different representations, since one can be more
effective than the other for the implementation of some specific operation and vice-versa for some other
operation.
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The choice of one representation over another can lead to simpler implementations or faster algorithms.

It can also be helpful to work simultaneously with two different representations, since one can be more
effective than the other for the implementation of some specific operation and vice-versa for some other
operation.

Some of the most frequently used solution representations:

0-1 incidence vector : Typically used when the ground set is partitioned into two subsets, one
corresponding to the elements that belong to the solution, while the others do not.

Generalized incidence vector : Often used when the ground set has to be partitioned into a number
of subsets, each of them with a different interpretation. Examples: graph coloring problem, vehicle
routing, and scheduling problems.

Permutation: Typically applies to scheduling, assignment, and routing problems in which one is
interested in establishing an optimal order.
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A neighborhood of a solution S ∈ F can be defined by any subset of F .

More formally, a neighborhood is a mapping that associates each feasible solution S ∈ F with a
subset N(S) = {S1, . . . , Sp} of feasible solutions also in F .
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More formally, a neighborhood is a mapping that associates each feasible solution S ∈ F with a
subset N(S) = {S1, . . . , Sp} of feasible solutions also in F .

Each solution S ′ ∈ N(S) can be reached from S by an operator called move.

Normally, two neighboring solutions S and S ′ ∈ N(S) differ only by a few elements and a move from
a solution S consists simply in changing one or more elements in S .
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A neighborhood of a solution S ∈ F can be defined by any subset of F .

More formally, a neighborhood is a mapping that associates each feasible solution S ∈ F with a
subset N(S) = {S1, . . . , Sp} of feasible solutions also in F .

Each solution S ′ ∈ N(S) can be reached from S by an operator called move.

Normally, two neighboring solutions S and S ′ ∈ N(S) differ only by a few elements and a move from
a solution S consists simply in changing one or more elements in S .

Usually, S ∈ N(S ′) whenever S ′ ∈ N(S).
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Define the search space graph G = (F ,M) to be such that:

Its node set corresponds to the set F of feasible solutions.

Its edge set M is such that there is an edge (S , S ′) ∈ M between two solutions S , S ′ ∈ F if and only
if S ′ ∈ N(S) and S ∈ N(S ′).
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Its node set corresponds to the set F of feasible solutions.

Its edge set M is such that there is an edge (S , S ′) ∈ M between two solutions S , S ′ ∈ F if and only
if S ′ ∈ N(S) and S ∈ N(S ′).

An extended search space graph may be similarly defined, encompassing not only the set of feasible
solutions F but, instead, the whole set F̂ = 2E formed by all subsets of elements of the ground set E .
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Define the search space graph G = (F ,M) to be such that:

Its node set corresponds to the set F of feasible solutions.

Its edge set M is such that there is an edge (S , S ′) ∈ M between two solutions S , S ′ ∈ F if and only
if S ′ ∈ N(S) and S ∈ N(S ′).

An extended search space graph may be similarly defined, encompassing not only the set of feasible
solutions F but, instead, the whole set F̂ = 2E formed by all subsets of elements of the ground set E .

The figure shows an instance of a combinatorial problem
in which the set F is formed by 16 feasible solutions
depicted in a square grid and represented by S(i , j), for
i , j = 1, . . . , 4.
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A search space graph associated with the above
problem instance can be created by imposing a
neighborhood definition on the node set F .
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Neighborhood N1

A search space graph associated with the above
problem instance can be created by imposing a
neighborhood definition on the node set F .

Neighborhood N1 is defined such that any so-
lution S(i , j) has neighbors

S(i + 1, j)

S(i − 1, j)

S(i , j + 1)

S(i , j − 1)

whenever they exist.
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Other different neighborhoods can be defined
and imposed on the same set of feasible solu-
tions.
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Neighborhood N2

Other different neighborhoods can be defined
and imposed on the same set of feasible solu-
tions.

Another neighborhood N2 can be defined, such
that any solution S(i , j) has neighbors

S(i + 1, j + 1)

S(i + 1, j − 1)

S(i − 1, j + 1)

S(i − 1, j − 1)

whenever they exist.
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Neighborhood N1

Neighborhood N2

Some pairs of solutions are closer within N1 or N2.
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Neighborhood N2

Some pairs of solutions are closer within N1 or N2.

◮ Six moves are necessary to traverse the N1 search space
graph from S(1, 1) to S(4, 4).

◮ Only three moves are necessary if neighborhood N2 is used.
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Neighborhood N1

Neighborhood N2

Some pairs of solutions are closer within N1 or N2.

◮ Six moves are necessary to traverse the N1 search space
graph from S(1, 1) to S(4, 4).

◮ Only three moves are necessary if neighborhood N2 is used.

While any feasible solution can be reached when
neighborhood N1 is used, N2 is not connected.



Search space graph

Local search Metaheuristics – 2017-11-08 15 / 37

Neighborhood N1

Neighborhood N2

Some pairs of solutions are closer within N1 or N2.

◮ Six moves are necessary to traverse the N1 search space
graph from S(1, 1) to S(4, 4).

◮ Only three moves are necessary if neighborhood N2 is used.

While any feasible solution can be reached when
neighborhood N1 is used, N2 is not connected.

◮ Only half of the solutions in N2 are reachable from any
given solution.

◮ This can lead to implementation difficulties or even make it
impossible to find good solutions.
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A natural idea is to combine neighborhoods N1

and N2 into a single neighborhood.
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Neighborhood N3

A natural idea is to combine neighborhoods N1

and N2 into a single neighborhood.

Neighborhood N3 can be defined as the union
of N1 and N2.
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Neighborhood N3

A natural idea is to combine neighborhoods N1

and N2 into a single neighborhood.

Neighborhood N3 can be defined as the union
of N1 and N2.

Within this new neighborhood, any feasible so-
lution S(i , j) has up to eight neighbors:

S(i + 1, j)

S(i − 1, j)

S(i , j + 1)

S(i , j − 1)

S(i + 1, j + 1)

S(i + 1, j − 1)

S(i − 1, j + 1)

S(i − 1, j − 1)

whenever they exist.
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Neighborhood N3

Different neighborhoods can be defined and
used in the implementation of a local search
method.

The larger the neighborhood, the denser
will be the search space graph and the
shorter will be the paths connecting any
two solutions.

Large neighborhoods require the
evaluation of more neighboring
solutions =⇒ larger computation times
during the investigation of the current
solution.
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Search space need not to be formed exclusively by feasible solutions in F .

It can contain any subset of the set F̂ = 2E formed by all solutions, either feasible or infeasible.

In this situation, the search can visit feasible and infeasible solutions, but must terminate at a
feasible solution.

Working with more complex search space graphs, which include infeasible solutions, can be essential
in some cases to ensure connectivity between any pair of feasible solutions.

Finding an appropriate neighborhood and the best way to explore it is a crucial step towards the
implementation of effective and efficient local search methods.
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Knapsack problem is defined over a set
I = {1, . . . , n} of items to be packed.

Every solution can be represented by a 0-1 binary
vector (x1, . . . , xn), in which xi = 1 if item i is
packed, xi = 0 otherwise, for every i = 1, . . . , n.
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Knapsack problem is defined over a set
I = {1, . . . , n} of items to be packed.

Every solution can be represented by a 0-1 binary
vector (x1, . . . , xn), in which xi = 1 if item i is
packed, xi = 0 otherwise, for every i = 1, . . . , n.

A move from any solution amounts to
complementing the value of some variable among
x1, . . . , xn, while keeping the others fixed: if an
item is in the knapsack, then remove it; otherwise,
pack it.
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Knapsack problem is defined over a set
I = {1, . . . , n} of items to be packed.

Every solution can be represented by a 0-1 binary
vector (x1, . . . , xn), in which xi = 1 if item i is
packed, xi = 0 otherwise, for every i = 1, . . . , n.

A move from any solution amounts to
complementing the value of some variable among
x1, . . . , xn, while keeping the others fixed: if an
item is in the knapsack, then remove it; otherwise,
pack it.

Problem with n = 3 items: each solution has
exactly n = 3 neighbors.

Neighbors of (1,0,1) are:
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Knapsack problem is defined over a set
I = {1, . . . , n} of items to be packed.

Every solution can be represented by a 0-1 binary
vector (x1, . . . , xn), in which xi = 1 if item i is
packed, xi = 0 otherwise, for every i = 1, . . . , n.

A move from any solution amounts to
complementing the value of some variable among
x1, . . . , xn, while keeping the others fixed: if an
item is in the knapsack, then remove it; otherwise,
pack it.

Problem with n = 3 items: each solution has
exactly n = 3 neighbors.

Neighbors of (1,0,1) are:

(0,0,1)
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Knapsack problem is defined over a set
I = {1, . . . , n} of items to be packed.

Every solution can be represented by a 0-1 binary
vector (x1, . . . , xn), in which xi = 1 if item i is
packed, xi = 0 otherwise, for every i = 1, . . . , n.

A move from any solution amounts to
complementing the value of some variable among
x1, . . . , xn, while keeping the others fixed: if an
item is in the knapsack, then remove it; otherwise,
pack it.

Problem with n = 3 items: each solution has
exactly n = 3 neighbors.

Neighbors of (1,0,1) are:

(0,0,1)

(1,1,1)
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Knapsack problem is defined over a set
I = {1, . . . , n} of items to be packed.

Every solution can be represented by a 0-1 binary
vector (x1, . . . , xn), in which xi = 1 if item i is
packed, xi = 0 otherwise, for every i = 1, . . . , n.

A move from any solution amounts to
complementing the value of some variable among
x1, . . . , xn, while keeping the others fixed: if an
item is in the knapsack, then remove it; otherwise,
pack it.

Problem with n = 3 items: each solution has
exactly n = 3 neighbors.

Neighbors of (1,0,1) are:

(0,0,1)

(1,1,1)

(1,0,0)
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Traveling salesman problem is defined over a set
V = {1, . . . , n} of cities that have to be visited
exactly once.

A feasible solution can be represented by a circular
permutation (π1, π2, . . . , πn−1, πn) of the n cities,
with πi ∈ V for every i = 1, . . . , n and πi 6= πj for
every i , j = 1, . . . , n : i 6= j .

This circular permutation is equivalent to any of
the n linear permutations (π1, π2, . . . , πn−1, πn),
(π2, π3, . . . , πn, π1), . . . , and
(πn, π1, . . . , πn−2, πn−1), each originating at a
different city.

All of them correspond to the same tour (π1, π2),
(π2, π3), . . . , (πn−1, πn), (πn, π1).

The search space graph has exactly n! nodes, each
of them corresponding to a permutation of the n

cities to be visited.
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Neighborhood N1:

Defined by all permutations that can be obtained
by exchanging the positions of two consecutive
cities of the current permutation.

Any solution (π1, . . . , πi−1, πi , . . . , πn) has exactly
n − 1 neighbors, each defined by a different
permutation (π1, . . . , πi , πi−1, . . . , πn)
characterized by the swap of cities πi−1 and πi , for
i = 2, . . . , n.

The figure illustrates the search space graph
corresponding to this neighborhood for a
symmetric traveling salesman problem with four
cities. Every solution has exactly three neighbors.
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Neighborhood N2:

Neighborhood N2 is defined by associating a solution (π1, . . . , πi , . . . , πj , . . . , πn) with all n(n − 1)/2
neighbors (π1, . . . , πj , . . . , πi , . . . , πn) that can be obtained by exchanging the positions of any two
cities πi and πj , for i , j = 1, . . . , n : i 6= j .

Considering the same example of a symmetric traveling salesman problem with four cities, every
solution has exactly six neighbors. In particular, the same solution (1, 2, 3, 4) has now (2, 1, 3, 4),
(1, 3, 2, 4), (1, 2, 4, 3), (3, 2, 1, 4), (1, 4, 3, 2), and (4, 2, 3, 1) as its neighbors.
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Neighborhood N2:

Neighborhood N2 is defined by associating a solution (π1, . . . , πi , . . . , πj , . . . , πn) with all n(n − 1)/2
neighbors (π1, . . . , πj , . . . , πi , . . . , πn) that can be obtained by exchanging the positions of any two
cities πi and πj , for i , j = 1, . . . , n : i 6= j .

Considering the same example of a symmetric traveling salesman problem with four cities, every
solution has exactly six neighbors. In particular, the same solution (1, 2, 3, 4) has now (2, 1, 3, 4),
(1, 3, 2, 4), (1, 2, 4, 3), (3, 2, 1, 4), (1, 4, 3, 2), and (4, 2, 3, 1) as its neighbors.

Neighborhood N3:

Neighborhood N3 is defined by associating a solution (π1, . . . , πi−1, πi , πi+1, . . . , πj , . . . , πn) with all
n(n − 1)/2 neighbors (π1, . . . , πi−1, πi+1, . . . , πi , πj , . . ., πn) that can be obtained by moving city πi

to position j , with 1 ≤ i < j ≤ n, and shifting by one position to the left all cities between positions
i + 1 and j .

Every solution has also exactly six neighbors. For example, solution (1, 2, 3, 4) has (2, 1, 3, 4),
(2, 3, 1, 4), (2, 3, 4, 1), (1, 3, 2, 4), (1, 3, 4, 2), and (1, 2, 4, 3) as its neighbors.
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The figure superimposes neighborhoods N1, N2, and N3,
illustrating the neighbors of solution (1, 2, 3, 4) within each
of the three neighborhoods.

Nodes connected by red edges belong to the three
neighborhoods. Nodes connected by blue edges are those
within neighborhood N2, while those connected by green
edges belong to neighborhood N3.
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mization problem with respect to neighborhood N if and
only if

f (S+) ≤ f (S), ∀S ∈ N(S+).
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Let

f (S+) ≤ f (S), ∀S ∈ N1(S
+)

f (S+) ≤ f (S), ∀S ∈ N2(S
+)

f (S+) ≤ f (S), ∀S ∈ N3(S
+)

S+ may not be a global optimum!

A solution S+ is said to be a local optimum for a mini-
mization problem with respect to neighborhood N if and
only if

f (S+) ≤ f (S), ∀S ∈ N(S+).

A global optimum is also locally optimal with
respect to any neighborhood, while a local
optimum is not necessarily a global optimum.
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whenever some optimality condition is met.



Local search as traversal of search space graph

Local search Metaheuristics – 2017-11-08 25 / 37

Local search methods can be viewed as a
traversal of the search space graph starting
from any given solution and stopping
whenever some optimality condition is met.



Local search as traversal of search space graph

Local search Metaheuristics – 2017-11-08 25 / 37

Local search methods can be viewed as a
traversal of the search space graph starting
from any given solution and stopping
whenever some optimality condition is met.

In most cases, a local search procedure is
made to stop after a locally optimal
solution is encountered.



Local search as traversal of search space graph

Local search Metaheuristics – 2017-11-08 25 / 37

Local search methods can be viewed as a
traversal of the search space graph starting
from any given solution and stopping
whenever some optimality condition is met.

In most cases, a local search procedure is
made to stop after a locally optimal
solution is encountered.

Metaheuristics such as tabu search,
iterated local search, and GRASP extend
the search beyond the first local optimum
found, offering different escape
mechanisms.



Local search as traversal of search space graph

Local search Metaheuristics – 2017-11-08 25 / 37

Local search methods can be viewed as a
traversal of the search space graph starting
from any given solution and stopping
whenever some optimality condition is met.

In most cases, a local search procedure is
made to stop after a locally optimal
solution is encountered.

Metaheuristics such as tabu search,
iterated local search, and GRASP extend
the search beyond the first local optimum
found, offering different escape
mechanisms.

The effectiveness and efficiency of a local
search method depend on several factors,
such as the starting solution, the
neighborhood structure, and the objective
function being optimized.



Local search as traversal of search space graph

Local search Metaheuristics – 2017-11-08 26 / 37

Local search methods can be viewed as a
traversal of the search space graph starting
from any given solution and stopping
whenever some optimality condition is met.

In most cases, a local search procedure is
made to stop after a locally optimal
solution is encountered.

Metaheuristics such as tabu search,
iterated local search, and GRASP extend
the search beyond the first local optimum
found, offering different escape
mechanisms.

The effectiveness and efficiency of a local
search method depend on several factors,
such as the starting solution, the
neighborhood structure, and the objective
function being optimized.

The main components or phases of a local
search method are:



Local search as traversal of search space graph

Local search Metaheuristics – 2017-11-08 26 / 37

Local search methods can be viewed as a
traversal of the search space graph starting
from any given solution and stopping
whenever some optimality condition is met.

In most cases, a local search procedure is
made to stop after a locally optimal
solution is encountered.

Metaheuristics such as tabu search,
iterated local search, and GRASP extend
the search beyond the first local optimum
found, offering different escape
mechanisms.

The effectiveness and efficiency of a local
search method depend on several factors,
such as the starting solution, the
neighborhood structure, and the objective
function being optimized.

The main components or phases of a local
search method are:

Start: Construction of the initial
solution, from where the search starts.
Methods are needed to build an initial
solution.

Neighborhood search: Application of a
subordinate heuristic or search strategy
to find an improving solution in the
neighborhood of the current solution.

Stop: Interruption of the search by a
stopping criterion, which in most cases
consists in the verification that a locally
optimal solution has been found.
Stopping criteria for the neighborhood
search are needed.
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begin FIRST-IMPROVING(S);
1 improvement ← .TRUE.;
2 while improvement = .TRUE. do
3 improvement ← .FALSE.;
4 forall S ′ ∈ N(S) while improvement = .FALSE. do
5 if f (S ′) < f (S) then
6 S ← S ′;
7 improvement ← .TRUE.;
8 end-if;
9 end-forall;
10 end-while;
11 return S ;
end FIRST-IMPROVING.

Pseudo-code of a first-improving local search procedure for
a minimization problem.

At any iteration of an iterative
improvement or first-improving
neighborhood search strategy, the
algorithm moves from the current
solution to any neighbor with a better
objective function value.

In general, the new solution is the first
improving solution identified along the
neighborhood search.

The pseudo-code describes a local search
procedure based on a first-improving
strategy for a minimization problem.
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begin BEST-IMPROVING(S);
1 improvement ← .TRUE.;
2 while improvement = .TRUE. do

3 improvement ← .FALSE.;
4 fbest ←∞;
5 forall S ′ ∈ N(S) do

6 if f (S ′) < fbest then

7 Sbest ← S ′;
8 fbest ← f (S ′);
9 end-if;
10 end-forall;
11 if fbest < f (S) then

12 S ← Sbest ;
13 improvement ← .TRUE.;
14 end-if;
15 end-while;
16 return S ;
end BEST-IMPROVING.

Pseudo-code of a best-improving local search procedure for a
minimization problem.

At any iteration of a best-improving local
search strategy, the algorithm moves
from the current solution to the best of
its neighbors, whenever this neighbor
improves upon the current solution.

The pseudo-code on the right describes a
local search procedure based on a
best-improving strategy for a
minimization problem.



Optimization problem: Single global optimum

Local search Metaheuristics – 2017-11-08 29 / 37

Consider the permutation representaton with n = 4
whose search space graph is shown in the figure.

The values of the objective function are shown
next to each solution in the figure.
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Consider the permutation representaton with n = 4
whose search space graph is shown in the figure.

The values of the objective function are shown
next to each solution in the figure.

For this minimization problem, there is only one
local minimum (colored red), which is also a global
optimum.

Independent of the starting solution and of the
neighborhood search strategy, the local search
always stops at the global optimum.



Traveling salesman problem: Symmetric example

Local search Metaheuristics – 2017-11-08 30 / 37

Consider the following symmetric traveling
salesman problem with five cities shown in the
figure.

Suppose the tour starts from node 0.
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Six nodes of the search space graph correspond to
locally optimal solutions: Two green nodes have
objective function values equal to 49, two blue
nodes have objective function values equal to 48,
and the two red nodes have objective function
values equal to 46.

Note that only the red nodes are globally optimal
solutions.
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The edge costs are different and the new solution
costs are shown in the figure.

Six nodes of the search space graph correspond to
locally optimal solutions: Two green nodes have
objective function values equal to 49, two blue
nodes have objective function values equal to 48,
and the two red nodes have objective function
values equal to 46.

Note that only the red nodes are globally optimal
solutions.

The solution obtained by local search varies,
depending on both the starting solution and the
neighborhood search strategy.
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The complexity of each neighborhood search iteration depends on:

The number of neighbors of each visited solution.

The efficiency of the computation of the cost function value for each neighbor.
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The complexity of each neighborhood search iteration depends on:

The number of neighbors of each visited solution.

The efficiency of the computation of the cost function value for each neighbor.

Efficient implementations of neighborhood search usually compute the cost of each neighbor S ′

by updating the cost of the current solution S ,

instead of calculating it from scratch, avoiding repetitive and unnecessary calculations.
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Recall that every solution S for an instance of the TSP can be represented by an incidence binary
vector (x1, . . . , xm), where m = n(n − 1)/2 and xj = 1 if the edge indexed by j belongs to the
corresponding tour, xj = 0 otherwise, for j = 1, . . . ,m.
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Edge lengths Edge indices Initial solution: S =
(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)

Recall that every solution S for an instance of the TSP can be represented by an incidence binary
vector (x1, . . . , xm), where m = n(n − 1)/2 and xj = 1 if the edge indexed by j belongs to the
corresponding tour, xj = 0 otherwise, for j = 1, . . . ,m.

The figures depicts an example involving a 5-vertex weighted graph.

The initial solution S corresponding to the incidence vector (1, 1, 1, 1, 1, 0, 0, 0, 0, 0), has a cost of 17.
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The 2-opt neighborhood for the TSP is
defined by replacing any pair of
nonadjacent edges of solution S by the
unique pair of edges that recreates a
Hamiltonian cycle.
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First local search iteration

The 2-opt neighborhood for the TSP is
defined by replacing any pair of
nonadjacent edges of solution S by the
unique pair of edges that recreates a
Hamiltonian cycle.

The figure displays the five 2-opt
neighbors of S (whose cost is 17).
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A first-improving neighborhood search
strategy returns the second generated
neighbor (with cost 16) as the improving
solution.
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First local search iteration

The 2-opt neighborhood for the TSP is
defined by replacing any pair of
nonadjacent edges of solution S by the
unique pair of edges that recreates a
Hamiltonian cycle.

The figure displays the five 2-opt
neighbors of S (whose cost is 17).

A first-improving neighborhood search
strategy returns the second generated
neighbor (with cost 16) as the improving
solution.

A best-improving strategy returns the
fourth neighbor (with cost 14).
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Assume that this fourth neighbor is
selected and becomes the new current
solution S = (1, 0, 1, 1, 0, 1, 0, 0, 0, 1).
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Second iteration: 2nd neighbor is local optimum

Assume that this fourth neighbor is
selected and becomes the new current
solution S = (1, 0, 1, 1, 0, 1, 0, 0, 0, 1).

The figure displays its five neighbors.
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Second iteration: 2nd neighbor is local optimum

Assume that this fourth neighbor is
selected and becomes the new current
solution S = (1, 0, 1, 1, 0, 1, 0, 0, 0, 1).

The figure displays its five neighbors.

The first- and best-improving neighbor is
the second from left to right (with cost
12).
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Second iteration: 2nd neighbor is local optimum

Assume that this fourth neighbor is
selected and becomes the new current
solution S = (1, 0, 1, 1, 0, 1, 0, 0, 0, 1).

The figure displays its five neighbors.

The first- and best-improving neighbor is
the second from left to right (with cost
12).

Since this solution cannot be improved
by any of its neighbors, then it is a local
optimum and the search is interrupted.
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Second iteration: 2nd neighbor is local optimum

Assume that this fourth neighbor is
selected and becomes the new current
solution S = (1, 0, 1, 1, 0, 1, 0, 0, 0, 1).

The figure displays its five neighbors.

The first- and best-improving neighbor is
the second from left to right (with cost
12).

Since this solution cannot be improved
by any of its neighbors, then it is a local
optimum and the search is interrupted.

The cost of each neighbor S ′ can be
recomputed in O(1) time from the cost
of solution S by simply:

◮ taking the cost f (S)
◮ subtracting the lengths of the two

removed edges
◮ adding the lengths of the two edges

that replaced them.
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3-opt neighborhood for the TSP

The 3-opt neighborhood for the TSP can
be defined by taking three nonadjacent
edges of the current solution and
replacing them with any of the four
possible combinations of three edges that
recreate a tour.

The figure shows the 3-opt neighborhood.
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The 3-opt neighborhood for the TSP can
be defined by taking three nonadjacent
edges of the current solution and
replacing them with any of the four
possible combinations of three edges that
recreate a tour.

The figure shows the 3-opt neighborhood.

Number of neighbors increases to O(n3):

◮ Search becomes slower.
◮ More solutions can be investigated and

better neighbors might be found.
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3-opt neighborhood for the TSP

The 3-opt neighborhood for the TSP can
be defined by taking three nonadjacent
edges of the current solution and
replacing them with any of the four
possible combinations of three edges that
recreate a tour.

The figure shows the 3-opt neighborhood.

Number of neighbors increases to O(n3):

◮ Search becomes slower.
◮ More solutions can be investigated and

better neighbors might be found.

Generalization: k-opt is formed by all
solutions that can be obtained by
replacing k edges from the current
solution by k edges not in the tour, so as
to create a new tour.
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The material in this talk is taken from

Chapter 4 – Local search

of our book, Optimization by GRASP: Greedy Ran-

domized Adaptive Search Procedures (Resende &
Ribeiro, Springer. 2016).


